18 research outputs found

    Paraneoplastic Neurological Syndromes associated with anti-Hu antibodies: are T lymphocytes involved or not?

    Get PDF
    In paraneoplastic neurological syndromes (PNS), ectopic expression of onconeural antigens by the tumor triggers an immune response that not only reacts with the tumor but also with the same antigens expressed in the nervous system. This immune response inhibits tumor growth. However, the price of tumor control is high, as PNS are devastating neurological syndromes leaving most of the patients severely disabled within a few months. One of the most frequently involved tumors is small cell lung cancer (SCLC), and approximately 50% of patients with PNS and SCLC have high-titer antibodies against the onconeural Hu-antigens (anti-Hu). Previous studies have clearly demonstrated that anti-Hu antibodies do not play a pathogenic role in Hu-PNS and tumor control, but rather are a useful diagnostic marker. Therefore, a role for the cellular immune system in the pathogenesis of PNS is hypothesized. In this thesis the role of T cells in PNS was investigated by studying CSF and blood of Hu-PNS patients. This role of T cells was confirmed by (i) 4-fold higher T lymphocyte numbers in CSF of Hu-PNS patients compared to controls; (ii) association of Hu-PNS with HLA-DQ2 and HLA-DR3; and (iii) neurological improvement or stabilization upon treatment with hCG. However, the presence of HuD-specific CD8+ T cells in CSF could not be demonstrated. Therefore, more research is required to either confirm or reject a role for T lymphocytes in Hu-PNS

    Small Hydrophobic Protein of Human Metapneumovirus Does Not Affect Virus Replication and Host Gene Expression In Vitro

    Get PDF
    Human metapneumovirus (HMPV) encodes a small hydrophobic (SH) protein of unknown function. HMPV from which the SH open reading frame was deleted (HMPVΔSH) was viable and displayed similar replication kinetics, cytopathic effect and plaque size compared with wild type HMPV in several cell-lines. In addition, no differences were observed in infection efficiency or cell-to-cell spreading in human primary bronchial epithelial cells (HPBEC) cultured at an air-liquid interphase. Host gene expression was analyzed in A549 cells infected with HMPV or HMPVΔSH using microarrays and mass spectrometry (MS) based techniques at multiple time points post infection. Only minor differences were observed in mRNA or protein expression levels. A possible function of HMPV SH as apoptosis blocker, as proposed for several members of the family Paramyxoviridae, was rejected based on this analysis. So far, a clear phenotype of HMPV SH deletion mutants in vitro at the virus and host levels is absent

    Emergence of a novel GII.17 norovirus – end of the GII.4 era?

    Get PDF
    In the winter of 2014/15 a novel GII.P17-GII.17 norovirus strain (GII.17 Kawasaki 2014) emerged, as a major cause of gastroenteritis outbreaks in China and Japan. Since their emergence these novel GII.P17-GII.17 viruses have replaced the previously dominant GII.4 genotype Sydney 2012 variant in some areas in Asia but were only detected in a limited number of cases on other continents. This perspective provides an overview of the available information on GII.17 viruses in order to gain insight in the viral and host characteristics of this norovirus genotype. We further discuss the emergence of this novel GII.P17-GII.17 norovirus in context of current knowledge on the epidemiology of noroviruses. It remains to be seen if the currently dominant norovirus strain GII.4 Sydney 2012 will be replaced in other parts of the world. Nevertheless, the public health community and surveillance systems need to be prepared in case of a potential increase of norovirus activity in the next seasons caused by this novel GII.P17-GII.17 norovirus

    Comparison of norovirus genogroup I, II and IV seroprevalence among children in the Netherlands, 1963, 1983 and 2006

    Get PDF
    Noroviruses are a major cause of acute gastroenteritis worldwide and are a genetically diverse group of viruses. Since 2002, an increasing number of norovirus outbreaks have been reported globally, but it is not clear whether this increase has been caused by a higher awareness or reflects the emergence of new genogroup II genotype 4 (GII.4) variants. The hypothesis that norovirus prevalence has increased post-2002 and is related to the emergence of GII.4 is tested in this study. Sera collected from children aged <5 years of three Dutch cross-sectional population based cohorts in 1963, 1983 and 2006/2007 (n=143, n=130 and n=376, respectively) were tested for specific serum IgG by protein array using antigens to GII.4 and a range of other antigens representing norovirus GI, GII and GIV genotypes. The protein array was validated by paired sera of norovirus infected patients and supernatants of B-cell cultures with single epitope specificity. Evidence for norovirus infection was found to be common among Dutch children in each cohort, but the prevalence towards different genotypes changed over time. At the genogroup level, GI seroprevalence decreased significantly between 1963 and 2006/2007, while a significant increase of GII and, in particular, specific antibodies of the genotype GII.4 was detected in the 2006/2007 cohort. There were no children with only GII.4 antibodies in the 1963 cohort. This study shows that the high GII.4 norovirus incidence in very young children is a recent phenomenon. These findings are of importance for vaccine development and trials that are currently focusing mostly on GII.4 viruses

    Optimisations and challenges involved in the creation of various bioluminescent and fluorescent influenza a virus strains for in vitro and in vivo applications

    Get PDF
    Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone. However, whilst bioluminescence is suited to in vivo imaging, fluorescent viruses are more appropriate for microscopy. Therefore, the idea l reporter virus varies depending on the experiment in question, and it is important that any reporter virus strategy can be adapted accordingly. Herein, a strategy was developed to create five different reporter viruses in a single virus backbone. Specifically, enhanced green fluorescent protein (eGFP), far-red fluorescent protein (fRFP), near-infrared fluorescent protein (iRFP), Gaussia luciferase (gLUC) and firefly luciferase (fLUC) were inserted into the PA gene segment of A/PR/8/34 (H1N1). This study provides a comprehensive characterisation of the effects of different reporter genes on influenza virus replication and reporter activity. In vivo reporter gene expression, in lung tissues, was only detected for eGFP, fRFP and gLUC expressing viruses. In vitro, the eGFP-expressing virus displayed the best reporter stability and could be used for correlative light electron microscopy (CLEM). This strategy was then used to create eGFP-expressing viruses consisting entirely of pandemic H1N1, highly pathogenic avian influenza (HPAI) H5N1 and H7N9. The HPAI H5N1 eGFP-expressing virus infected mice and reporter gene expression was detected, in lung tissues, in vivo. Thus, this study provides new tools and insights for the creation of bioluminescent and fluorescent influenza A reporter viruses. Copyright

    Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans

    Get PDF
    A novel human coronavirus (HCoV-EMC/2012) was isolated from a man with acute pneumonia and renal failure in June 2012. This report describes the complete genome sequence, genome organization, and expression strategy of HCoV-EMC/2012 and its relation with known coronaviruses. The genome contains 30,119 nucleotides and contains at least 10 predicted open reading frames, 9 of which are predicted to be expressed from a nested set of seven subgenomic mRNAs. Phylogenetic analysis of the replicase gene of coronaviruses with completely sequenced genomes showed that HCoV-EMC/2012 is most closely related to Tylonycteris bat coronavirus HKU4 (BtCoV-HKU4) and Pipistrellus bat coronavirus HKU5 (BtCoV-HKU5), which prototype two species in lineage C of the genus Betacoronavirus. In accordance with the guidelines of the International Committee on Taxonomy of Viruses, and in view of the 75% and 77% amino acid sequence identity in 7 conserved replicase domains with BtCoVHKU4 and BtCoV-HKU5, respectively, we propose that HCoV-EMC/2012 prototypes a novel species in the genus Betacoronavirus. HCoV-EMC/2012 may be most closely related to a coronavirus detected in Pipistrellus pipistrellus in The Netherlands, but

    Norovirus infection in harbor porpoises

    Get PDF
    A norovirus was detected in harbor porpoises, a previously unknown host for norovirus. This norovirus had low similarity to any known norovirus. Viral RNA was detected primarily in intestinal tissue, and specific serum antibodies were detected in 8 (24%) of 34 harbor porpoises from the North Sea

    Avian influenza A viruses: From zoonosis to pandemic

    No full text
    Zoonotic influenza A viruses originating from the animal reservoir pose a threat for humans, as they have the ability to trigger pandemics upon adaptation to and invasion of an immunologically naive population. Of particular concern are the H5N1 viruses that continue to circulate in poultry in numerous countries in Europe, Asia and Africa, and the recently emerged H7N9 viruses in China, due to their relatively high number of human fatalities and pandemic potential. To start a pandemic, zoonotic influenza A viruses should not only acquire the ability to attach to, enter and replicate in the critical target cells in the respiratory tract of the new host, but also efficiently spread between humans by aerosol or respiratory droplet transmission. Here, we discuss the latest advances on the genetic and phenotypic determinants required for avian influenza A viruses to adapt to and transmit between mammals

    Evolutionary dynamics of human and avian metapneumoviruses

    No full text
    Human (HMPV) and avian (AMPV) metapneumoviruses are closely related viruses that cause respiratory tract illnesses in humans and birds, respectively. Although HMPV was first discovered in 2001, retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV was first isolated in the 1970s, and can be classified into four subgroups, A-D. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has emerged from AMPV-C upon zoonosis. Presently, at least four genetic lineages of HMPV circulate in human populations - A1, A2, B1 and B2 - of which lineages A and B are antigenically distinct. We used a Bayesian Markov Chain Monte Carlo (MCMC) framework to determine the evolutionary and epidemiologica

    Multiple natural substitutions in avian influenza A virus PB2 facilitate efficient replication in human cells

    No full text
    A strong restriction of the avian influenza A virus polymerase in mammalian cells generally limits viral host-range switching. Although substitutions like E627K in the PB2 polymerase subunit can facilitate polymerase activity to allow replication in mammals, many human H5N1 and H7N9 viruses lack this adaptive substitution. Here, several previously unknown, naturally occurring, adaptive substitutions in PB2 were identified by bioinformatics, and their enhancing activity was verified using in vitro assays. Adaptive substitutions enhanced polymerase activity and virus replication in mammalian cells for avian H5N1 and H7N9 viruses but not for a partially human-adapted H5N1 virus. Adaptive substitutions toward basic amino acids were frequent and were mostly clustered in a putative RNA exit channel in a polymerase crystal structure. Phylogenetic analysis demonstrated divergent dependency of influenza viruses on adaptive substitutions. The novel adaptive substitutions found in this study increase basic understanding of influenza virus host adaptation and will help in surveillance efforts
    corecore