72 research outputs found
The Status of Dosage Compensation in the Multiple X Chromosomes of the Platypus
Dosage compensation has been thought to be a ubiquitous property of sex chromosomes that are represented differently in males and females. The expression of most X-borne genes is equalized between XX females and XY males in therian mammals (marsupials and âplacentalsâ) by inactivating one X chromosome in female somatic cells. However, compensation seems not to be strictly required to equalize the expression of most Z-borne genes between ZZ male and ZW female birds. Whether dosage compensation operates in the third mammal lineage, the egg-laying monotremes, is of considerable interest, since the platypus has a complex sex chromosome system in which five X and five Y chromosomes share considerable genetic homology with the chicken ZW sex chromosome pair, but not with therian XY chromosomes. The assignment of genes to four platypus X chromosomes allowed us to examine X dosage compensation in this unique species. Quantitative PCR showed a range of compensation, but SNP analysis of several X-borne genes showed that both alleles are transcribed in a heterozygous female. Transcription of 14 BACs representing 19 X-borne genes was examined by RNA-FISH in female and male fibroblasts. An autosomal control gene was expressed from both alleles in nearly all nuclei, and four pseudoautosomal BACs were usually expressed from both alleles in male as well as female nuclei, showing that their Y loci are active. However, nine X-specific BACs were usually transcribed from only one allele. This suggests that while some genes on the platypus X are not dosage compensated, other genes do show some form of compensation via stochastic transcriptional inhibition, perhaps representing an ancestral system that evolved to be more tightly controlled in placental mammals such as human and mouse
Citizen scienceâs transformative impact on science, citizen empowerment and socio-political processes
Citizen science (CS) can foster transformative impact for science, citizen empowerment and socio-political processes. To unleash this impact, a clearer understanding of its current status and challenges for its development is needed. Using quantitative indicators developed in a collaborative stakeholder process, our study provides a comprehensive overview of the current status of CS in Germany, Austria and Switzerland. Our online survey with 340 responses focused on CS impact through (1) scientific practices, (2) participant learning and empowerment, and (3) socio-political processes. With regard to scientific impact, we found that data quality control is an established component of CS practice, while publication of CS data and results has not yet been achieved by all project coordinators (55%). Key benefits for citizen scientists were the experience of collective impact (âmaking a difference together with othersâ) as well as gaining new knowledge. For the citizen scientistsâ learning outcomes, different forms of social learning, such as systematic feedback or personal mentoring, were essential. While the majority of respondents attributed an important value to CS for decision-making, only few were confident that CS data were indeed utilized as evidence by decision-makers. Based on these results, we recommend (1) that project coordinators and researchers strengthen scientific impact by fostering data management and publications, (2) that project coordinators and citizen scientists enhance participant impact by promoting social learning opportunities and (3) that project initiators and CS networks foster socio-political impact through early engagement with decision-makers and alignment with ongoing policy processes. In this way, CS can evolve its transformative impact
- âŠ