7 research outputs found

    The handbook for standardised field and laboratory measurements in terrestrial climate-change experiments and observational studies

    Get PDF
    Climate change is a worldwide threat to biodiversity and ecosystem structure, functioning, and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate‐change impacts across the soil–plant–atmosphere continuum. An increasing number of climate‐change studies is creating new opportunities for meaningful and high‐quality generalisations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis, and upscaling. Many of these challenges relate to a lack of an established “best practice” for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change

    Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands

    No full text
    The arid and semi-arid drylands of the world are increasingly recognized for their role in the terrestrial net carbon dioxide (CO) uptake, which depends largely on plant litter decomposition and the subsequent release of CO back to the atmosphere. Observed decomposition rates in drylands are higher than predictions by biogeochemical models, which are traditionally based on microbial (biotic) degradation enabled by precipitation as the main mechanism of litter decomposition. Consequently, recent research in drylands has focused on abiotic mechanisms, mainly photochemical and thermal degradation, but they only partly explain litter decomposition under dry conditions, suggesting the operation of an additional mechanism. Here we show that in the absence of precipitation, absorption of dew and water vapor by litter in the field enables microbial degradation at night. By experimentally manipulating solar irradiance and nighttime air humidity, we estimated that most of the litter CO efflux and decay occurring in the dry season was due to nighttime microbial degradation, with considerable additional contributions from photochemical and thermal degradation during the daytime. In a complementary study, at three sites across the Mediterranean Basin, litter CO efflux was largely explained by litter moisture driving microbial degradation and ultraviolet radiation driving photodegradation. We further observed mutual enhancement of microbial activity and photodegradation at a daily scale. Identifying the interplay of decay mechanisms enhances our understanding of carbon turnover in drylands, which should improve the predictions of the long-term trend of global carbon sequestration.This research project was financially supported by ... and the Spanish Ministry of Economy and Competitiveness (project CGL2011-24748/PHOTODEG).Peer Reviewe

    CO2 Fertilization: When, Where, How Much?

    No full text
    corecore