44 research outputs found

    Europium Underneath Graphene on Ir(111): Intercalation Mechanism, Magnetism, and Band Structure

    Full text link
    The intercalation of Eu underneath Gr on Ir(111) is comprehensively investigated by microscopic, magnetic, and spectroscopic measurements, as well as by density functional theory. Depending on the coverage, the intercalated Eu atoms form either a (2×2)(2 \times 2) or a (3×3)(\sqrt{3} \times \sqrt{3})R30∘30^{\circ} superstructure with respect to Gr. We investigate the mechanisms of Eu penetration through a nominally closed Gr sheet and measure the electronic structures and magnetic properties of the two intercalation systems. Their electronic structures are rather similar. Compared to Gr on Ir(111), the Gr bands in both systems are essentially rigidly shifted to larger binding energies resulting in n-doping. The hybridization of the Ir surface state S1S_1 with Gr states is lifted, and the moire superperiodic potential is strongly reduced. In contrast, the magnetic behavior of the two intercalation systems differs substantially as found by X-ray magnetic circular dichroism. The (2×2)(2 \times 2) Eu structure displays plain paramagnetic behavior, whereas for the (3×3)(\sqrt{3} \times \sqrt{3})R30∘30^{\circ} structure the large zero-field susceptibility indicates ferromagnetic coupling, despite the absence of hysteresis at 10 K. For the latter structure, a considerable easy-plane magnetic anisotropy is observed and interpreted as shape anisotropy.Comment: 18 pages with 14 figures, including Supplemental Materia

    The catalytic subunit of Plasmodium falciparum casein kinase 2 is essential for gametocytogenesis

    Get PDF
    Casein kinase 2 (CK2) is a pleiotropic kinase phosphorylating substrates in different cellular compartments in eukaryotes. In the malaria parasite Plasmodium falciparum, PfCK2 is vital for asexual proliferation of blood-stage parasites. Here, we applied CRISPR/Cas9-based gene editing to investigate the function of the PfCK2alpha catalytic subunit in gametocytes, the sexual forms of the parasite that are essential for malaria transmission. We show that PfCK2alpha localizes to the nucleus and cytoplasm in asexual and sexual parasites alike. Conditional knockdown of PfCK2alpha expression prevented the transition of stage IV into transmission-competent stage V gametocytes, whereas the conditional knockout of pfck2a completely blocked gametocyte maturation already at an earlier stage of sexual differentiation. In summary, our results demonstrate that PfCK2alpha is not only essential for asexual but also sexual development of P. falciparum blood-stage parasites and encourage studies exploring PfCK2alpha as a potential target for dual-active antimalarial drugs

    Fractional and Integer Excitations in Quantum Antiferromagnetic Spin 1/2 Ladders

    Full text link
    Spectral densities are computed in unprecedented detail for quantum antiferromagnetic spin 1/2 two-leg ladders. These results were obtained due to a major methodical advance achieved by optimally chosen unitary transformations. The approach is based on dressed integer excitations. Considerable weight is found at high energies in the two-particle sector. Precursors of fractional spinon physics occur implying that there is no necessity to resort to fractional excitations in order to describe features at higher energies.Comment: 6 pages, 4 figures included, minor text changes, improved figure

    Observation of two-magnon bound states in the two-leg ladders of (Ca,La)14Cu24O41

    Full text link
    Phonon-assisted 2-magnon absorption is studied at T=4 K in the spin-1/2 two-leg ladders of Ca_14-x La_x Cu_24 O_41 (x=5 and 4) for polarization of the electrical field parallel to the legs and the rungs, respectively. Two peaks at about 2140 and 2800 1/cm reflect van-Hove singularities in the density of states of the strongly dispersing 2-magnon singlet bound state, and a broad peak at about 4000 1/cm is identified with the 2-magnon continuum. Two different theoretical approaches (Jordan-Wigner fermions and perturbation theory) describe the data very well for J_parallel = 1050 - 1100 1/cm and J_parallel / J_perp = 1 - 1.1. A striking similarity of the high-energy continuum absorption of the ladders and of the undoped high T_c cuprates is observed.Comment: 4 pages, 3 figures, Revte

    The Structure of Operators in Effective Particle-Conserving Models

    Full text link
    For many-particle systems defined on lattices we investigate the global structure of effective Hamiltonians and observables obtained by means of a suitable basis transformation. We study transformations which lead to effective Hamiltonians conserving the number of excitations. The same transformation must be used to obtain effective observables. The analysis of the structure shows that effective operators give rise to a simple and intuitive perspective on the initial problem. The systematic calculation of n-particle irreducible quantities becomes possible constituting a significant progress. Details how to implement the approach perturbatively for a large class of systems are presented.Comment: 12 pages, 1 figure, accepted by J. Phys. A: Math. Ge

    Optical study of orbital excitations in transition-metal oxides

    Get PDF
    The orbital excitations of a series of transition-metal compounds are studied by means of optical spectroscopy. Our aim was to identify signatures of collective orbital excitations by comparison with experimental and theoretical results for predominantly local crystal-field excitations. To this end, we have studied TiOCl, RTiO3 (R=La, Sm, Y), LaMnO3, Y2BaNiO5, CaCu2O3, and K4Cu4OCl10, ranging from early to late transition-metal ions, from t_2g to e_g systems, and including systems in which the exchange coupling is predominantly three-dimensional, one-dimensional or zero-dimensional. With the exception of LaMnO3, we find orbital excitations in all compounds. We discuss the competition between orbital fluctuations (for dominant exchange coupling) and crystal-field splitting (for dominant coupling to the lattice). Comparison of our experimental results with configuration-interaction cluster calculations in general yield good agreement, demonstrating that the coupling to the lattice is important for a quantitative description of the orbital excitations in these compounds. However, detailed theoretical predictions for the contribution of collective orbital modes to the optical conductivity (e.g., the line shape or the polarization dependence) are required to decide on a possible contribution of orbital fluctuations at low energies, in particular in case of the orbital excitations at about 0.25 eV in RTiO3. Further calculations are called for which take into account the exchange interactions between the orbitals and the coupling to the lattice on an equal footing.Comment: published version, discussion of TiOCl extended to low T, improved calculation of orbital excitation energies in TiOCl, figure 16 improved, references updated, 33 pages, 20 figure

    Phonon anomalies and electron-phonon interaction in RuSr_2GdCu_2O_8 ferromagnetic superconductor: Evidence from infrared conductivity

    Full text link
    Critical behavior of the infrared reflectivity of RuSr_2GdCu_2O_8 ceramics is observed near the superconducting T_{SC} = 45 K and magnetic T_M = 133 K transition temperatures. The optical conductivity reveals the typical features of the c-axis optical conductivity of strongly underdoped multilayer superconducting cuprates. The transformation of the Cu-O bending mode at 288 cm^{-1} to a broad absorption peak at the temperatures between T^* = 90 K and T_{SC} is clearly observed, and is accompanied by the suppression of spectral weight at low frequencies. The correlated shifts to lower frequencies of the Ru-related phonon mode at 190 cm^{-1} and the mid-IR band at 4800 cm^{-1} on decreasing temperature below T_M are observed. It provides experimental evidence in favor of strong electron-phonon coupling of the charge carriers in the Ru-O layers which critically depends on the Ru core spin alignment. The underdoped character of the superconductor is explained by strong hole depletion of the CuO_2 planes caused by the charge carrier self-trapping at the Ru moments.Comment: 11 pages incl. 5 figures, submitted to PR

    Strong anisotropy of superexchange in the copper-oxygen chains of La_{14-x}Ca_{x}Cu_{24}O_{41}

    Full text link
    Electron spin resonance data of Cu^{2+} ions in La_{14-x}Ca_{x}Cu_{24}O_{41} crystals (x=9,11,12) reveal a very large width of the resonance line in the paramagnetic state. This signals an unusually strong anisotropy of ~10% of the isotropic Heisenberg superexchange in the Cu-O chains of this compound. The strong anisotropy can be explained by the specific geometry of two symmetrical 90 degree Cu-O-Cu bonds, which boosts the importance of orbital degrees of freedom. Our data show the apparent limitations of the applicability of an isotropic Heisenberg model to the low dimensional cuprates.Comment: 14 pages, 3 figures included, to be published in Phys. Rev. Let

    ESBL displace: a protocol for an observational study to identify displacing Escherichia coli strain candidates from ESBL-colonized travel returners using phenotypic, genomic sequencing and metagenome analysis

    Get PDF
    Introduction: Invading extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-PE), non-ESBL E. coli, and other bacteria form a complex environment in the gut. The duration and dynamics of ESBL-PE colonization varies among individuals. Understanding the factors associated with colonization may lead to decolonization strategies. In this study, we aim to identify (i) single E. coli strains and (ii) microbiome networks that correlate with retention or decline of colonization, and (iii) pan-sensitive E. coli strains that potentially could be used to displace ESBL-PE during colonization. Methods and analysis: We recruit healthy travellers to Southeast Asia for a one-year prospective observational follow-up study. We collect and biobank stool, serum, and peripheral blood mononuclear cells (PBMCs) at predefined timepoints. Additional information is collected with questionnaires. We determine the colonization status with ESBL-PE and non-ESBL E. coli and quantify cell densities in stools and ratios over time. We characterize multiple single bacterial isolates per patient and timepoint using whole genome sequencing (WGS) and 16S/ITS amplicon-based and shotgun metagenomics. We determine phylogenetic relationships between isolates, antimicrobial resistance (AMR; phenotypic and genotypic), and virulence genes. We describe the bacterial and fungal stool microbiome alpha and beta diversity on 16S/ITS metagenomic data. We describe patterns in microbiome dynamics to identify features associated with protection or risk of ESBL-PE colonization. Ethics and dissemination: The study is registered (clinicaltrials.gov; NCT04764500 on 09/02/2019) and approved by the Ethics Committee (EKNZ project ID 2019-00044). We will present anonymized results at conferences and in scientific journals. Bacterial sequencing data will be shared via publicly accessible databases according to FAIR principles

    Jordan-Wigner approach to dynamic correlations in spin-ladders

    Full text link
    We present a method for studying the excitations of low-dimensional quantum spin systems based on the Jordan-Wigner transformation. Using an extended RPA-scheme we calculate the correlation function of neighboring spin flips which well approximates the optical conductivity of Sr2CuO3{\rm Sr_2CuO_3}. We extend this approach to the two-leg S=1/2S=1/2--ladder by numbering the spin operators in a meander-like sequence. We obtain good agreement with the optical conductivity of the spin ladder compound (La,Ca)14_{14}Cu24_{24}O41_{41} for polarization along the rungs. For polarization along the legs higher order correlations are important to explain the weight of high-energy continuum excitations and we estimate the contribution of 4-- and 6--fermion processes.Comment: 15 pages, 16 figure
    corecore