728 research outputs found
Boundary effect on CDW: Friedel oscillations, STM image
We study the effect of open boundary condition on charge density waves (CDW).
The electron density oscillates rapidly close to the boundary, and additional
non-oscillating terms (~ln(r)) appear. The Friedel oscillations survive beyond
the CDW coherence length (v_F/Delta), but their amplitude gets heavily
suppressed. The scanning tunneling microscopy image (STM) of CDW shows clear
features of the boundary. The local tunneling conductance becomes asymmetric
with respect to the Fermi energy, and considerable amount of spectral weight is
transferred to the lower gap edge. Also it exhibits additional zeros reflecting
the influence of the boundary.Comment: 7 pages, 6 figure
Self Organization and a Dynamical Transition in Traffic Flow Models
A simple model that describes traffic flow in two dimensions is studied. A
sharp {\it jamming transition } is found that separates between the low density
dynamical phase in which all cars move at maximal speed and the high density
jammed phase in which they are all stuck. Self organization effects in both
phases are studied and discussed.Comment: 6 pages, 4 figure
On Retardation Effects in Space Charge Calculations Of High Current Electron Beams
Laser-plasma accelerators are expected to deliver electron bunches with high
space charge fields. Several recent publications have addressed the impact of
space charge effects on such bunches after the extraction into vacuum.
Artifacts due to the approximation of retardation effects are addressed, which
are typically either neglected or approximated. We discuss a much more
appropriate calculation for the case of laser wakefield acceleration with
negligible retardation artifacts due to the calculation performed in the mean
rest frame. This presented calculation approach also aims at a validation of
other simulation approaches
Spin-Peierls Quantum Phase Transitions in Coulomb Crystals
The spin-Peierls instability describes a structural transition of a crystal
due to strong magnetic interactions. Here we demonstrate that cold Coulomb
crystals of trapped ions provide an experimental testbed in which to study this
complex many-body problem and to access extreme regimes where the instability
is triggered by quantum fluctuations alone. We present a consistent analysis
based on different analytical and numerical methods, and provide a detailed
discussion of its feasibility on the basis of ion-trap experiments. Moreover,
we identify regimes where this quantum simulation may exceed the power of
classical computers.Comment: slightly longer than the published versio
Recommended from our members
Glancing angle deposition of sculptured thin metal films at room temperature
Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect
Banding pattern indicative of echinococcosis in a commercial cysticercosis western blot
<p>Abstract</p> <p>Objective</p> <p>A commercial cysticercosis Western blot was evaluated for serological cross-reactivity of sera from patients with alveolar (AE) and cystic echinococcosis (CE).</p> <p>Methods</p> <p>A total of 161 sera were examined, including 31 sera from AE-patients, 11 sera from CE-patients, 9 sera from patients with other parasitic diseases and 109 sera from patients with unrelated medical conditions. All AE-and CE-sera were also examined by the echinococcosis Western blot.</p> <p>Results</p> <p>More sera from patients with AE than with CE showed cross-reactivity in the form of ladder-like patterns ("Mikado aspect") and untypical bands at 6-8 kDa (71% and 77.4% versus 27.3% and 45.5%, respectively). In contrast, triplets of bands in the area above 50 kDa and between 24 and 39-42 kDa were more frequent in CE than in AE sera. The fuzzy band at 50-55 kDa typical for cysticercosis was absent in all AE and CE sera.</p> <p>Conclusions</p> <p>Atypical banding patterns in the cysticercosis Western blot should raise the suspicion of a metacestode infection different from Taenia solium, i.e. Echinococcus multilocularis or E. granulosus, especially when the Mikado aspect and an altered 6-8 kDa band is visible in the absence of a fuzzy 50-55 kDa band.</p
Universality of modulation length (and time) exponents
We study systems with a crossover parameter lambda, such as the temperature
T, which has a threshold value lambda* across which the correlation function
changes from exhibiting fixed wavelength (or time period) modulations to
continuously varying modulation lengths (or times). We report on a new
exponent, nuL, characterizing the universal nature of this crossover. These
exponents, similar to standard correlation length exponents, are obtained from
motion of the poles of the momentum (or frequency) space correlation functions
in the complex k-plane (or omega-plane) as the parameter lambda is varied. Near
the crossover, the characteristic modulation wave-vector KR on the variable
modulation length "phase" is related to that on the fixed modulation length
side, q via |KR-q|\propto|T-T*|^{nuL}. We find, in general, that nuL=1/2. In
some special instances, nuL may attain other rational values. We extend this
result to general problems in which the eigenvalue of an operator or a pole
characterizing general response functions may attain a constant real (or
imaginary) part beyond a particular threshold value, lambda*. We discuss
extensions of this result to multiple other arenas. These include the ANNNI
model. By extending our considerations, we comment on relations pertaining not
only to the modulation lengths (or times) but also to the standard correlation
lengths (or times). We introduce the notion of a Josephson timescale. We
comment on the presence of "chaotic" modulations in "soft-spin" and other
systems. These relate to glass type features. We discuss applications to Fermi
systems - with particular application to metal to band insulator transitions,
change of Fermi surface topology, divergent effective masses, Dirac systems,
and topological insulators. Both regular periodic and glassy (and spatially
chaotic behavior) may be found in strongly correlated electronic systems.Comment: 22 pages, 15 figure
Nonlinear ac conductivity of one-dimensional Mott insulators
We discuss a semiclassical calculation of low energy charge transport in
one-dimensional (1d) insulators with a focus on Mott insulators, whose charge
degrees of freedom are gapped due to the combination of short range
interactions and a periodic lattice potential. Combining RG and instanton
methods, we calculate the nonlinear ac conductivity and interpret the result in
terms of multi-photon absorption. We compare the result of the semiclassical
calculation for interacting systems to a perturbative, fully quantum mechanical
calculation of multi-photon absorption in a 1d band insulator and find good
agreement when the number of simultaneously absorbed photons is large.Comment: Dedicated to Thomas Nattermann on the occasion of his 60th birthday.
To appear in JSTAT. 5 pages, 2 figure
Gapped optical excitations from gapless phases: imperfect nesting in unconventional density waves
We consider the effect of imperfect nesting in quasi-one-dimensional
unconventional density waves in the case, when the imperfect nesting and the
gap depends on the same wavevector component.
The phase diagram is very similar to that in a conventional density wave. The
density of states is highly asymmetric with respect to the Fermi energy.
The optical conductivity at T=0 remains unchanged for small deviations from
perfect nesting. For higher imperfect nesting parameter, an optical gap opens,
and considerable amount of spectral weight is transferred to higher
frequencies. This makes the optical response of our system very similar to that
of a conventional density wave. Qualitatively similar results are expected in
d-density waves.Comment: 8 pages, 7 figure
X-ray spectrum of a pinned charge density wave
We calculate the X-ray diffraction spectrum produced by a pinned charge
density wave (CDW). The signature of the presence of a CDW consists of two
satellite peaks, asymmetric as a consequence of disorder. The shape and the
intensity of these peaks are determined in the case of a collective weak
pinning using the variational method. We predict divergent asymmetric peaks,
revealing the presence of a Bragg glass phase. We deal also with the long range
Coulomb interactions, concluding that both peak divergence and anisotropy are
enhanced. Finally we discuss how to detect experimentally the Bragg glass phase
in the view of the role played by the finite resolution of measurements.Comment: 13 pages 10 figure
- …