9 research outputs found

    Nutrient-dense orange-fleshed sweetpotato: advances in drought-tolerance breeding and understanding of management practices for sustainable next-generation cropping systems in sub-Saharan Africa

    Get PDF
    Almost half of children <5 years old living in sub-Saharan Africa (SSA) suffer from vitamin A deficiency and 60% suffer from iron deficiency. Thus, there has been a strong commitment to breeding for, promoting awareness of, and delivering adapted pro-vitamin A rich orange-fleshed sweetpotato (OFSP) in SSA during the past two decades and for enhanced iron content since 2014. This review article focuses on major breeding efforts in SSA to enhance the drought tolerance of OFSP and reviews integrated crop management practices for improved and sustained sweetpotato production in SSA farming systems. Under climate change, the frequency and severity of droughts is expected to increase. Technical issues are presented in the context of addressing challenges along the entire value chain to ensure adoption. First, the use of an accelerated breeding scheme reduced the breeding cycle from 8–10 to 4–5 years. Since 2010, 19 drought-tolerant OFSP cultivars have been released in Mozambique, 7 in Malawi, and 2 in South Africa. Moreover, research in four breeding populations using the heterosis exploiting breeding scheme (HEBS) demonstrated that within one breeding cycle of 5 years, clones with significantly higher root yield, abiotic tolerance, host plant resistance to pests and diseases, and early maturity can be produced. In the future, HEBS will be combined with greater use of modern genomic tools, new phenotyping tools, and CRISPR/Cas9-mediated gene editing. Second, beyond genetic enhancements, evidence is presented that using improved crop management systems, existing sweetpotato yields can be increased 2–4 times. Current knowledge is reviewed concerning sweetpotato's role in diverse farming systems, but integrated crop management is clearly under researched. Third, the outlook for drought tolerance breeding indicates that two distinct classes of nutrient-rich cultivars are emerging: (1) Early maturing cultivars (<4 month growing period) that escape drought but also serve humid environments with small landholding size per capita; and (2) Medium maturing (4–6 month growing period) cultivars that avoid drought, are drought tolerant and exhibit continuous root formation. Increasing commercialization of the crop and climate change will drive demand, and the willingness of farmers to invest in improved sweetpotato crop management

    Genotype × environment interaction and selection for drought adaptation in sweetpotato (Ipomoea batatas [L.] Lam.) in Mozambique

    Get PDF
    Sweetpotato is grown throughout the year in Mozambique but drought affects storage root yield and biomass productivity. The objectives of this research were to estimate the impact of genotype × environment interactions (G × E) in sweetpotato and select genotypes based on drought indices such as geometric mean, percent yield reduction, drought sensitivity index and harvest index. A total of 58 clones were evaluated during the dry season of 2006, 2008 and 2009. Two treatments were applied for this multi-year trial: full irrigation and without irrigation at the middle of root initiation growth stage. The field layout was a randomized complete block design with three replications. ‘Jonathan’, ‘Resisto’ and ‘Tanzania’ were the check cultivars in each treatment. Storage root and vine yields were recorded at harvest in the trials. Harvest index was computed from the yield data. The analysis of variance, regression and the additive main effects multiplicative interaction (AMMI) analyses, plus phenotypic coefficient of variation and ecovalence were used for dissecting the G × E and assessing the stability of each clone. Treatment, genotype × reatment and genotype year (G × Y) interactions had highest contributions to the variation in storage root yield observed among clones. The stability of harvest index was significantly correlated with the absolute AMMI’s IPCA1 and IPCA2 values for storage root yield. Cultivar performance varied within treatments. Four clones had significantly higher storage root yield (t ha-1 ) than ‘Tanzania’, the best check cultivar under drought. In conclusion, storage root yield (t ha-1 ) was negatively affected by drought and G × Y interaction. Harvest index stability and the geometric mean may be key to identify clones with storage root yield stability and high storage root yield under both treatments. At least two environments should be used at early breeding stages to consider harvest index in the early breeding cycle

    Literaturverzeichnis

    No full text
    corecore