8 research outputs found

    Livestock-Associated MRSA CC1 in Norway; Introduction to Pig Farms, Zoonotic Transmission, and Eradication

    Get PDF
    Farm animals have been identified as an emerging reservoir for transmission of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) to humans. The low incidence of MRSA in humans and farm animals in Norway has led to the implementation of a national strategy of surveillance and control of LA-MRSA aiming to prevent livestock becoming a domestic source of MRSA to humans. In 2015, MRSA clonal complex 1 spa-type t177 was identified in nine Norwegian pig herds in two neighboring counties. An outbreak investigation was undertaken, and measures of control through eradication were imposed. We performed a register-based cohort study including pig herds and MRSA-positive persons in Norway between 2008 and 2016 to investigate the livestock-association of MRSA CC1, the transmission of the outbreak strain to humans before and after control measures, and the effect of control measures imposed. Data from the Norwegian Surveillance System of Communicable Diseases were merged with data collected through outbreak investigations for LA-MRSA, the National Registry and the Norwegian Register for Health Personnel. Whole-genome sequencing was performed on isolates from livestock and humans identified through contact tracing, in addition to t177 and t127 isolates diagnosed in persons in the same counties. It is likely that a farm worker introduced MRSA CC1 to a sow farm, and further transmission to eight fattening pig farms through trade of live pigs confirmed the potential for livestock association of this MRSA type. The outbreak strain formed a distinct phylogenetic cluster which in addition to the pig farms included one sheep herd and five exposed persons. None of the investigated isolates from possible cases without direct contact to the MRSA positive farms were phylogenetically related to the outbreak strain. Moreover, isolates of t177 or t127 from healthcare and community-acquired cases were not closely related to the outbreak cluster. Eradication measures imposed were effective in eliminating MRSA t177 from the positive pig holdings, and the outbreak strain was not detected in the national pig population or in persons from these counties after control measures

    A descriptive study of acute outbreaks of respiratory disease in Norwegian fattening pig herds

    Get PDF
    Background Respiratory diseases are major health concerns in the pig production sector worldwide, contributing adversely to morbidity and mortality. Over the past years there was a rise in reported incidents of respiratory disease in pigs in Norway, despite population wide freedom from Aujeszky´s disease, porcine reproductive and respiratory syndrome, porcine respiratory corona virus and enzootic pneumonia. The main objective of this study was to investigate acute outbreaks of respiratory disease in conventional Norwegian fattening pig herds. The study included 14 herds. In seven herds with reported outbreaks of acute respiratory disease, data on clinical signs was recorded and samples for laboratory examination were collected. Diagnostic protocols were compared by parallel analysis of clinically healthy pigs from seven non-outbreak herds. Results The most commonly reported clinical signs were sudden deaths and dyspnea. An average compartment morbidity of 60%, mortality of 4% and case fatality of 9% was recorded in the outbreak herds. Post-mortem examinations revealed acute lesions resembling porcine pleuropneumonia in all 28 pigs investigated from the outbreak herds and in 2 of the 24 (8%) pigs from the non-outbreak herds. Chronic lesions were recorded in another 2 pigs (8%) from the non-outbreak herds. Actinobacillus pleuropneumoniae serovar 8 was isolated from lungs and/or pleura from all tested pigs (n = 28) in the outbreak herds, and from 2 out of 24 pigs (8%) in the non-outbreak herds, one pig with an acute and another pig with a chronic infection. No other significant bacterial findings were made. Seroconversion to A. pleuropneumoniae antibodies was detectable in all outbreak herds analyzed and in six out of seven non-outbreak herds, but the risk ratio for seroconversion of individual pigs was higher (risk ratio 2.3 [1.50- 3.43 95% CI; P < 0.001]) in the outbreak herds. All herds tested positive for porcine circovirus type 2 and negative for influenza A viruses on oral fluid RT-qPCR. Conclusion The main etiological pathogen found during acute outbreaks of respiratory disease was A. pleuropneumoniae serovar 8. All pigs from outbreak herds had typical lesions of acute porcine pleuropneumonia, and only A. pleuropneumoniae serovar 8 was identified. Co-infections were not found to impact disease development.publishedVersio

    Actinobacillus pleuropneumoniae Eradication with Enrofloxacin May Lead to Dissemination and Long-Term Persistence of Quinolone Resistant Escherichia coli in Pig Herds

    No full text
    Norway has a favourable situation with regard to health status and antimicrobial usage in the pig production sector. However, one of the major disease-causing agents in the commercial pig population is Actinobacillus pleuropneumoniae (APP). In some herds, APP eradication has been performed by using enrofloxacin in combination with a partial herd depopulation. The aim of this study was to investigate the long-term effects of a single treatment event with enrofloxacin on the occurrence of quinolone resistant Escherichia coli (QREC). The study was designed as a retrospective case/control study, where the herds were selected based on treatment history. Faecal samples were taken from sows, gilts, fattening pigs and weaners for all herds where available. A semi-quantitative culturing method was used to identify the relative quantity of QREC in the faecal samples. A significant difference in overall occurrence and relative quantity of QREC was identified between the case and control herds, as well as between each animal age group within the case/control groups. The results indicate that a single treatment event with enrofloxacin significantly increased the occurrence of QREC in the herd, even years after treatment and with no subsequent exposure to quinolones

    A descriptive study of acute outbreaks of respiratory disease in Norwegian fattening pig herds

    Get PDF
    Background Respiratory diseases are major health concerns in the pig production sector worldwide, contributing adversely to morbidity and mortality. Over the past years there was a rise in reported incidents of respiratory disease in pigs in Norway, despite population wide freedom from Aujeszky´s disease, porcine reproductive and respiratory syndrome, porcine respiratory corona virus and enzootic pneumonia. The main objective of this study was to investigate acute outbreaks of respiratory disease in conventional Norwegian fattening pig herds. The study included 14 herds. In seven herds with reported outbreaks of acute respiratory disease, data on clinical signs was recorded and samples for laboratory examination were collected. Diagnostic protocols were compared by parallel analysis of clinically healthy pigs from seven non-outbreak herds. Results The most commonly reported clinical signs were sudden deaths and dyspnea. An average compartment morbidity of 60%, mortality of 4% and case fatality of 9% was recorded in the outbreak herds. Post-mortem examinations revealed acute lesions resembling porcine pleuropneumonia in all 28 pigs investigated from the outbreak herds and in 2 of the 24 (8%) pigs from the non-outbreak herds. Chronic lesions were recorded in another 2 pigs (8%) from the non-outbreak herds. Actinobacillus pleuropneumoniae serovar 8 was isolated from lungs and/or pleura from all tested pigs (n = 28) in the outbreak herds, and from 2 out of 24 pigs (8%) in the non-outbreak herds, one pig with an acute and another pig with a chronic infection. No other significant bacterial findings were made. Seroconversion to A. pleuropneumoniae antibodies was detectable in all outbreak herds analyzed and in six out of seven non-outbreak herds, but the risk ratio for seroconversion of individual pigs was higher (risk ratio 2.3 [1.50- 3.43 95% CI; P < 0.001]) in the outbreak herds. All herds tested positive for porcine circovirus type 2 and negative for influenza A viruses on oral fluid RT-qPCR. Conclusion The main etiological pathogen found during acute outbreaks of respiratory disease was A. pleuropneumoniae serovar 8. All pigs from outbreak herds had typical lesions of acute porcine pleuropneumonia, and only A. pleuropneumoniae serovar 8 was identified. Co-infections were not found to impact disease development

    Livestock-Associated MRSA CC1 in Norway; Introduction to Pig Farms, Zoonotic Transmission, and Eradication

    No full text
    Farm animals have been identified as an emerging reservoir for transmission of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) to humans. The low incidence of MRSA in humans and farm animals in Norway has led to the implementation of a national strategy of surveillance and control of LA-MRSA aiming to prevent livestock becoming a domestic source of MRSA to humans. In 2015, MRSA clonal complex 1 spa-type t177 was identified in nine Norwegian pig herds in two neighboring counties. An outbreak investigation was undertaken, and measures of control through eradication were imposed. We performed a register-based cohort study including pig herds and MRSA-positive persons in Norway between 2008 and 2016 to investigate the livestock-association of MRSA CC1, the transmission of the outbreak strain to humans before and after control measures, and the effect of control measures imposed. Data from the Norwegian Surveillance System of Communicable Diseases were merged with data collected through outbreak investigations for LA-MRSA, the National Registry and the Norwegian Register for Health Personnel. Whole-genome sequencing was performed on isolates from livestock and humans identified through contact tracing, in addition to t177 and t127 isolates diagnosed in persons in the same counties. It is likely that a farm worker introduced MRSA CC1 to a sow farm, and further transmission to eight fattening pig farms through trade of live pigs confirmed the potential for livestock association of this MRSA type. The outbreak strain formed a distinct phylogenetic cluster which in addition to the pig farms included one sheep herd and five exposed persons. None of the investigated isolates from possible cases without direct contact to the MRSA positive farms were phylogenetically related to the outbreak strain. Moreover, isolates of t177 or t127 from healthcare and community-acquired cases were not closely related to the outbreak cluster. Eradication measures imposed were effective in eliminating MRSA t177 from the positive pig holdings, and the outbreak strain was not detected in the national pig population or in persons from these counties after control measures
    corecore