74 research outputs found

    Evaluating usability of cross-platform smartphone applications

    Get PDF
    The computing power of smartphones is increasing as time goes. However, the proliferation of multiple different types of operating platforms affected interoperable smartphone applications development. Thus, the cross-platform development tools are coined. Literature showed that smartphone applications developed with the native platforms have better user experience than the cross-platform counterparts. However, comparative evaluation of usability of cross-platform applications on the deployment platforms is not studied yet. In this work, we evaluated usability of a crossword puzzle developed with PhoneGap on Android, Windows Phone, and BlackBerry. The evaluation was conducted focusing on the developer's adaptation effort to native platforms and the end users. Thus, we observed that usability of the cross-platform crossword puzzle is unaffected on the respective native platforms and the SDKs require only minimal configuration effort. In addition, we observed the prospect of HTML5 and related web technologies as our future work towards evaluating and enhancing usability in composing REST-based services for smartphone applications

    Towards NFC payments using a lightweight architecture for the Web of Things

    Get PDF
    The Web (and Internet) of Things has seen the rapid emergence of new protocols and standards, which provide for innovative models of interaction for applications. One such model fostered by the Web of Things (WoT) ecosystem is that of contactless interaction between devices. Near Field Communication (NFC) technology is one such enabler of contactless interactions. Contactless technology for the WoT requires all parties to agree one common definition and implementation and, in this paper, we propose a new lightweight architecture for the WoT, based on RESTful approaches. We show how the proposed architecture supports the concept of a mobile wallet, enabling users to make secure payments employing NFC technology with their mobile devices. In so doing, we argue that the vision of the WoT is brought a step closer to fruition

    Every Cloud Has a Push Data Lining: Incorporating Cloud Services in a Context-Aware Application

    Get PDF
    We investigated context-awareness by utilising multiple sources of context in a mobile device setting. In our experiment we developed a system consisting of a mobile client, running on the Android platform, integrated with a cloud-based service. These components were integrated using pushmessaging technology.One of the key featureswas the automatic adaptation of smartphones in accordance with implicit user needs. The novelty of our approach consists in the use of multiple sources of context input to the system, which included the use of calendar data and web based user configuration tool, as well as that of an external, cloud-based, configuration file storing user interface preferences which, pushed at log-on time irrespective of access device, frees the user from having to manually configure its interface.The systemwas evaluated via two rounds of user evaluations (n = 50 users), the feedback of which was generally positive and demonstrated the viability of using cloud-based services to provide an enhanced context-aware user experience

    Mobile money system design for illiterate users in rural Ethiopia

    Get PDF
    Current mobile money systems provide users with hierarchical user interface and represent money as a positive rational numbers of the form 1, 3, 4.87.N. However, research indicates that rural communities that cannot read and write have a challenge entering such numbers in to mobile money system. Navigating through hierarchical text menu is also difficult to illiterate individuals. The present study uses concepts like memory placeholders, dragging & dropping; swiping, temporary holding space, and frequency counter and proposed a system that consists of three layers. The first layer denotes user interface and uses photos of currency notes, second layer is a placeholder memory that keep record of the frequency of currency bill, and the last layer keeps record of the total digital money in the system. We believe that the proposed system enables illiterate to identify currency notes while making payments and receiving payments, count digital money while making payments and or receiving payments during transaction

    Towards cloud to device push messaging on android: Technologies, possibilities and challenges

    Get PDF
    In this paper we look at different push messaging alternatives available for Android. Push messaging provides an im-portant aspect of server to device communication, and we specifically focus on the integration of cloud computing with mo-bile devices through the use of push-based technologies. By conducting a benchmarking test, we investigate the performance of four relevant push technologies for the Android platform, namely C2DM, XMPP, Xtify and Urban Airship. The compari-son focuses on three aspects of the libraries: 1) The stability; 2) Response times; and 3) Energy consumption. The test is con-ducted on both WLAN and 3G, and includes several mobile device types. Additionally, we also integrate with the Google App Engine to provide the cloud integration server that is responsible for sending push messages to the mobile devices

    Sensors in your clothes: Design and development of a prototype

    Get PDF
    Wearable computing is fast advancing as a preferred approach for integrating software solutions not only in our environment, but also in our everyday garments to exploit the numerous information sources we constantly interact with. This paper explores this context further by showing the possible use of wearable sensor technology for information critical information systems, through the design and development of a proof-of-concept prototyp

    Data analysis as a service: an infrastructure for storing and analyzing the internet of things

    Get PDF
    As the Internet of Things (IoT) is becoming an increasingly trendy topic both for individuals, businesses and governments, the need for academically reviewed and developed prototypes focusing on certain aspects of IoT are increasing as well. Throughout this paper we propose an architecture and a technology stack for creating real-time applications focusing on time-series data generated by IoT devices. The architecture and technology stack are then implemented through a proof-of-concept prototype named Office Analysis as a Service, DaaS, a data-centric web application developed using Meteor. js and MongoDB. We also propose a data structure for storing time-series data in a MongoDB document for optimal query performance of large datasets. One common research challenge in the IoT, security, is considered only briefly, and is of utmost importance in future research

    Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation

    Get PDF
    The products of a Hungarian experimental plantation for energy crops were investigated. Young shoots of poplar clones (Populus x euramericana and Populus x interamericana), black locust (Robinia pseudoacacia), willow (Salix alba), and an herbaceous plant (Miscanthus sinensis) revealed unexpectedly similar thermal behavior in inert and oxidative atmospheres, as well. An 8-fold difference in the level of grinding did not result in substantial differences in the thermal decomposition. The effect of oxygen in the ambient gas was studied at low sample masses (0.2-0.4 mg) that excluded the overheating due to the high reaction heat of the combustion process. The presence of oxygen affects the decomposition from ca. 220 degreesC. Nevertheless, the extrapolated onset temperature of the hemicellulose decomposition is practically the same at 0, 5, and 21 V/V% oxygen. A group of 12 experiments, representing two grinding levels, three plant genera and four different heating programs were evaluated simultaneously by the method of least squares employing the model of independent pseudocomponents. All evaluated experiments were well described by the same set of kinetic parameters; only the parameters describing the peak area of the partial processes differed. A technique was recommended for the appropriate handling of the nonrandom errors in the simultaneous evaluation of experiment series

    Thermal Decomposition Kinetics of Woods with an Emphasis on Torrefaction

    Get PDF
    The pyrolysis kinetics of Norwegian spruce and birch wood was studied to obtain information on the kinetics of torrefaction. Thermogravimetry (TGA) was employed with nine different heating programs, including linear, stepwise, modulated and constant reaction rate (CRR) experiments. The 18 experiments on the 2 feedstocks were evaluated simultaneously via the method of least-squares. Part of the kinetic parameters could be assumed common for both woods without a considerable worsening of the fit quality. This process results in better defined parameters and emphasizes the similarities between the woods. Three pseudo-components were assumed. Two of them were described by distributed activation energy models (DAEMs), while the decomposition of the cellulose pseudo-component was described by a self-accelerating kinetics. In another approach, the three pseudo-components were described by n-order reactions. Both approaches resulted in nearly the same fit quality, but the physical meaning of the model, based on three n-order reactions, was found to be problematic. The reliability of the models was tested by checking how well the experiments with higher heating rates can be described by the kinetic parameters obtained from the evaluation of a narrower subset of 10 experiments with slower heating. A table of data was calculated that may provide guidance about the extent of devolatilization at various temperature residence time values during wood torrefaction

    PainDroid: An android-based virtual reality application for pain assessment

    Get PDF
    Earlier studies in the field of pain research suggest that little efficient intervention currently exists in response to the exponential increase in the prevalence of pain. In this paper, we present an Android application (PainDroid) with multimodal functionality that could be enhanced with Virtual Reality (VR) technology, which has been designed for the purpose of improving the assessment of this notoriously difficult medical concern. Pain- Droid has been evaluated for its usability and acceptability with a pilot group of potential users and clinicians, with initial results suggesting that it can be an effective and usable tool for improving the assessment of pain. Participant experiences indicated that the application was easy to use and the potential of the application was similarly appreciated by the clinicians involved in the evaluation. Our findings may be of considerable interest to healthcare providers, policy makers, and other parties that might be actively involved in the area of pain and VR research
    corecore