161 research outputs found

    Kinetic Inductance Magnetometer

    Full text link
    Ultrasensitive magnetic field detection is utilized in the fields of science, medicine and industry. We report on a novel magnetometer relying on the kinetic inductance of superconducting material. The kinetic inductance exhibits a non-linear response with respect to DC current, a fact that is exploited by applying magnetic flux through a superconducting loop to generate a shielding current and a change in the inductance of the loop. The magnetometer is arranged into a resonator, allowing readout through a transmission measurement that makes the device compatible with radio frequency multiplexing techniques. The device is fabricated using a single thin-film layer of NbN, simplifying the fabrication process compared to existing magnetometer technologies considerably. Our experimental data, supported by theory, demonstrates a magnetometer having potential to replace established technology in applications requiring ultra-high sensitivity.Comment: 16 pages, 6 figure

    Flux-driven Josephson parametric amplifier for sub-GHz frequencies fabricated with side-wall passivated spacer junction technology

    Full text link
    We present experimental results on a Josephson parametric amplifier tailored for readout of ultra-sensitive thermal microwave detectors. In particular, we discuss the impact of fabrication details on the performance. We show that the small volume of deposited dielectric materials enabled by the side-wall passivated spacer niobium junction technology leads to robust operation across a wide range of operating temperatures up to 1.5 K. The flux-pumped amplifier has gain in excess of 20 dB in three-wave mixing and its center frequency is tunable between 540 MHz and 640 MHz. At 600 MHz, the amplifier adds 105 mK ±\pm 9 mK of noise, as determined with the hot/cold source method. Phase-sensitive amplification is demonstrated with the device

    Multiplexed readout of kinetic inductance bolometer arrays

    Full text link
    Kinetic inductance bolometer (KIB) technology is a candidate for passive sub-millimeter wave and terahertz imaging systems. Its benefits include scalability into large 2D arrays and operation with intermediate cryogenics in the temperature range of 5 -- 10 K. We have previously demonstrated the scalability in terms of device fabrication, optics integration, and cryogenics. In this article, we address the last missing ingredient, the readout. The concept, serial addressed frequency excitation (SAFE), is an alternative to full frequency-division multiplexing at microwave frequencies conventionally used to read out kinetic inductance detectors. We introduce the concept, and analyze the criteria of the multiplexed readout avoiding the degradation of the signal-to-noise ratio in the presence of a thermal anti-alias filter inherent to thermal detectors. We present a practical scalable realization of a readout system integrated into a prototype imager with 8712 detectors. This is used for demonstrating the noise properties of the readout. Furthermore, we present practical detection experiments with a stand-off laboratory-scale imager.Comment: 7 pages, 6 figure

    Characterizing cryogenic amplifiers with a matched temperature-variable noise source

    Full text link
    We present a cryogenic microwave noise source with a characteristic impedance of 50 Ω\Omega, which can be installed in a coaxial line of a cryostat. The bath temperature of the noise source is continuously variable between 0.1 K and 5 K without causing significant back-action heating on the sample space. As a proof-of-concept experiment, we perform Y-factor measurements of an amplifier cascade that includes a traveling wave parametric amplifier and a commercial high electron mobility transistor amplifier. We observe system noise temperatures as low as 680−200+20680^{+20}_{-200} mK at 5.7 GHz corresponding to 1.5−0.7+0.11.5^{+0.1}_{-0.7} excess photons. The system we present has immediate applications in the validation of solid-state qubit readout lines.Comment: The following article has been accepted by Review of Scientific Instruments. After it is published, it will be found at https://doi.org/10.1063/5.002895

    Conformal Titanium Nitride in a Porous Silicon Matrix: a Nanomaterial for In-Chip Supercapacitors

    Get PDF
    Today's supercapacitor energy storages are typically discrete devices aimed for printed boards and power applications. The development of autonomous sensor networks and wearable electronics and the miniaturisation of mobile devices would benefit substantially from solutions in which the energy storage is integrated with the active device. Nanostructures based on porous silicon (PS) provide a route towards integration due to the very high inherent surface area to volume ratio and compatibility with microelectronics fabrication processes. Unfortunately, pristine PS has limited wettability and poor chemical stability in electrolytes and the high resistance of the PS matrix severely limits the power efficiency. In this work, we demonstrate that excellent wettability and electro-chemical properties in aqueous and organic electrolytes can be obtained by coating the PS matrix with an ultra-thin layer of titanium nitride by atomic layer deposition. Our approach leads to very high specific capacitance (15 F/cm3^3), energy density (1.3 mWh/cm3^3), power density (up to 214 W/cm3^3) and excellent stability (more than 13,000 cycles). Furthermore, we show that the PS-TiN nanomaterial can be integrated inside a silicon chip monolithically by combining MEMS and nanofabrication techniques. This leads to realisation of in-chip supercapacitor, i.e., it opens a new way to exploit the otherwise inactive volume of a silicon chip to store energy

    Signal crosstalk in a flip-chip quantum processor

    Full text link
    Quantum processors require a signal-delivery architecture with high addressability (low crosstalk) to ensure high performance already at the scale of dozens of qubits. Signal crosstalk causes inadvertent driving of quantum gates, which will adversely affect quantum-gate fidelities in scaled-up devices. Here, we demonstrate packaged flip-chip superconducting quantum processors with signal-crosstalk performance competitive with those reported in other platforms. For capacitively coupled qubit-drive lines, we find on-resonant crosstalk better than -27 dB (average -37 dB). For inductively coupled magnetic-flux-drive lines, we find less than 0.13 % direct-current flux crosstalk (average 0.05 %). These observed crosstalk levels are adequately small and indicate a decreasing trend with increasing distance, which is promising for further scaling up to larger numbers of qubits. We discuss the implication of our results for the design of a low-crosstalk, on-chip signal delivery architecture, including the influence of a shielding tunnel structure, potential sources of crosstalk, and estimation of crosstalk-induced qubit-gate error in scaled-up quantum processors.Comment: 16 pages, 12 figures, includes appendice

    Characterization of a fabrication process for the integration of superconducting qubits and RSFQ circuits

    Full text link
    In order to integrate superconducting qubits with rapid-single-flux-quantum (RSFQ) control circuitry, it is necessary to develop a fabrication process that fulfills at the same time the requirements of both elements: low critical current density, very low operating temperature (tens of milliKelvin) and reduced dissipation on the qubit side; high operation frequency, large stability margins, low dissipated power on the RSFQ side. For this purpose, VTT has developed a fabrication process based on Nb trilayer technology, which allows the on-chip integration of superconducting qubits and RSFQ circuits even at very low temperature. Here we present the characterization (at 4.2 K) of the process from the point of view of the Josephson devices and show that they are suitable to build integrated superconducting qubits
    • 

    corecore