6 research outputs found

    Application of an optimized annotation pipeline to the Cryptococcus deuterogattii genome reveals dynamic primary metabolic gene clusters and genomic impact of RNAi loss

    Get PDF
    International audienceEvaluating the quality of a de novo annotation of a complex fungal genome based on RNA-seq data remains a challenge. In this study, we sequentially optimized a Cufflinks-CodingQuary-based bioinformatics pipeline fed with RNA-seq data using the manually annotated model pathogenic yeasts Cryptococcus neoformans and Cryptococcus deneoformans as test cases. Our results show that the quality of the annotation is sensitive to the quantity of RNA-seq data used and that the best quality is obtained with 5–10 million reads per RNA-seq replicate. We also showed that the number of introns predicted is an excellent a priori indicator of the quality of the final de novo annotation. We then used this pipeline to annotate the genome of the RNAi-deficient species Cryptococcus deuterogattii strain R265 using RNA-seq data. Dynamic transcriptome analysis revealed that intron retention is more prominent in C. deuterogattii than in the other RNAi-proficient species C. neoformans and C. deneoformans. In contrast, we observed that antisense transcription was not higher in C. deuterogattii than in the two other Cryptococcus species. Comparative gene content analysis identified 21 clusters enriched in transcription factors and transporters that have been lost. Interestingly, analysis of the subtelomeric regions in these three annotated species identified a similar gene enrichment, reminiscent of the structure of primary metabolic clusters. Our data suggest that there is active exchange between subtelomeric regions, and that other chromosomal regions might participate in adaptive diversification of Cryptococcus metabolite assimilation potential

    Transcriptional Analysis Allows Genome Reannotation and Reveals that Cryptococcus gattii VGII Undergoes Nutrient Restriction during Infection

    No full text
    Cryptococcus gattii is a human and animal pathogen that infects healthy hosts and caused the Pacific Northwest outbreak of cryptococcosis. The inhalation of infectious propagules can lead to internalization of cryptococcal cells by alveolar macrophages, a niche in which C. gattii cells can survive and proliferate. Although the nutrient composition of macrophages is relatively unknown, the high induction of amino acid transporter genes inside the phagosome indicates a preference for amino acid uptake instead of synthesis. However, the presence of countable errors in the R265 genome annotation indicates significant inhibition of transcriptomic analysis in this hypervirulent strain. Thus, we analyzed RNA-Seq data from in vivo and in vitro cultures of C. gattii R265 to perform the reannotation of the genome. In addition, based on in vivo transcriptomic data, we identified highly expressed genes and pathways of amino acid metabolism that would enable C. gattii to survive and proliferate in vivo. Importantly, we identified high expression in three APC amino acid transporters as well as the GABA permease. The use of amino acids as carbon and nitrogen sources, releasing ammonium and generating carbohydrate metabolism intermediaries, also explains the high expression of components of several degradative pathways, since glucose starvation is an important host defense mechanism

    Predominance of the SARS-CoV-2 Lineage P.1 and Its Sublineage P.1.2 in Patients from the Metropolitan Region of Porto Alegre, Southern Brazil in March 2021

    Get PDF
    Almost a year after the COVID-19 pandemic had begun, new lineages (B.1.1.7, B.1.351, P.1, and B.1.617.2) associated with enhanced transmissibility, immunity evasion, and mortality were identified in the United Kingdom, South Africa, and Brazil. The previous most prevalent lineages in the state of Rio Grande do Sul (RS, Southern Brazil), B.1.1.28 and B.1.1.33, were rapidly replaced by P.1 and P.2, two B.1.1.28-derived lineages harboring the E484K mutation. To perform a genomic characterization from the metropolitan region of Porto Alegre, we sequenced viral samples to: (i) identify the prevalence of SARS-CoV-2 lineages in the region, the state, and bordering countries/regions; (ii) characterize the mutation spectra; (iii) hypothesize viral dispersal routes by using phylogenetic and phylogeographic approaches. We found that 96.4% of the samples belonged to the P.1 lineage and approximately 20% of them were assigned as the novel P.1.2, a P.1-derived sublineage harboring signature substitutions recently described in other Brazilian states and foreign countries. Moreover, sequences from this study were allocated in distinct branches of the P.1 phylogeny, suggesting multiple introductions in RS and placing this state as a potential diffusion core of P.1-derived clades and the emergence of P.1.2. It is uncertain whether the emergence of P.1.2 and other P.1 clades is related to clinical or epidemiological consequences. However, the clear signs of molecular diversity from the recently introduced P.1 warrant further genomic surveillance
    corecore