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Abstract

Evaluating the quality of a de novo annotation of a complex fungal genome based on RNA-seq data remains a challenge. In this study, we
sequentially optimized a Cufflinks-CodingQuary-based bioinformatics pipeline fed with RNA-seq data using the manually annotated model
pathogenic yeasts Cryptococcus neoformans and Cryptococcus deneoformans as test cases. Our results show that the quality of the anno-
tation is sensitive to the quantity of RNA-seq data used and that the best quality is obtained with 5–10 million reads per RNA-seq replicate.
We also showed that the number of introns predicted is an excellent a priori indicator of the quality of the final de novo annotation. We
then used this pipeline to annotate the genome of the RNAi-deficient species Cryptococcus deuterogattii strain R265 using RNA-seq data.
Dynamic transcriptome analysis revealed that intron retention is more prominent in C. deuterogattii than in the other RNAi-proficient spe-
cies C. neoformans and C. deneoformans. In contrast, we observed that antisense transcription was not higher in C. deuterogattii than in
the two other Cryptococcus species. Comparative gene content analysis identified 21 clusters enriched in transcription factors and trans-
porters that have been lost. Interestingly, analysis of the subtelomeric regions in these three annotated species identified a similar gene
enrichment, reminiscent of the structure of primary metabolic clusters. Our data suggest that there is active exchange between subtelo-
meric regions, and that other chromosomal regions might participate in adaptive diversification of Cryptococcus metabolite assimilation
potential.
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Introduction
In recent years, we have seen an astonishing multiplication of
fungal genome sequences (James et al. 2020). Long-read sequenc-
ing and adapted bioinformatics tools are quickly improving as
well. It is expected that telomere-to-telomere whole-genome se-
quencing will soon become standard for reference genomes of di-
verse organisms (Giordano et al. 2017; Dal Molin et al. 2018; Yadav
et al. 2018). Yet, fungal genomes remain difficult to annotate.
Historically, most annotation tools have relied upon comparative
genomics, but other pipelines use RNA-seq data or a combination
of both approaches to propose gene annotation models (Cantarel
et al. 2007; Hass et al. 2011; Min et al. 2017; Haridas et al. 2018).
These pipelines are very efficient in intron-poor species, at least
for predicting coding regions. For instance, a recent MAKER-

based optimized pipeline tested on 39 budding yeast genomes

missed only 3.9% of genes and 4.8% of exons, on average (Shen

et al. 2018). However, the results were poorer in intron-rich spe-

cies, for which gene annotation is challenging. Even when RNA-

seq data are available, it is still very difficult to correctly predict

the exon-intron structure primarily because fungal exons can be

extremely short (Janbon et al. 2014), but also because these

genomes are compact. Thus, when tested on fungal data sets, de

novo transcriptome assemblers like Trinity (Grabherr et al. 2011)

or Cufflinks (Trapnell et al. 2010) tend to predict very large tran-

scripts with no biological relevance. Nevertheless, several pipe-

lines have been published and sequencing centers like the Joint

Genome Institute (JGI) and the Broad Institute have developed
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specialized pipelines to produce annotation drafts, which are
very useful in large-scale comparison analyses (Hass et al. 2011;
Haridas et al. 2018).

Some methods, like the construction of large deletion collec-
tions, or precise analysis of gene content needs more precise an-
notation, and the annotation strategy applied will depend on the
goal of the research (Mudge and Harrow 2016). Manual curation
of a pre-annotated genome will likely result in the highest-
quality gene prediction. Some tools, like Artemis (Carver et al.
2012) and Apollo (Dunn et al. 2019), have been used to manually
curate annotation, but they are time-consuming even when sev-
eral annotators are implemented. Without manual curation, it is
impossible to anticipate the results from an annotation bioinfor-
matics pipeline fed with RNA-seq data. Typically, the quality of
the prediction will depend on the diversity, quantity, and quality
of the data, but no a priori indicator exists to determine if the de
novo gene prediction is accurate.

Pathogenic Cryptococcus species are basidiomycete yeasts,
which cause nearly 200,000 deaths annually around the world
(Kwon-Chung et al. 2014). There are currently eight recognized
pathogenic species of Cryptococcus (Hagen et al. 2015; Farrer et al.
2019). Manual annotation of the Cryptococcus neoformans and
Cryptococcus deneoformans reference genomes revealed complex
and dynamic transcriptomes (Janbon et al. 2014; Wallace et al.
2020). These annotations were recently completed through pre-
cise identification of the transcript leader (TL) and 3’UTR sequen-
ces through TSS-seq and 3UTR-seq analyses; these annotations
are likely the most complete and detailed annotations in intron-
rich fungi (Wallace et al. 2020). With 99.5% of 6795 annotated cod-
ing genes containing introns, five to six introns per coding gene,
and 37,832 introns in total, an automatic annotation of these
genomes would be considered highly challenging even with the
large sets of RNA-seq data that have been produced (Janbon et al.
2014; Janbon 2018; Wallace et al. 2020).

In this study, we compared the performances of three annota-
tion pipelines fed with RNA-seq data. We gradually optimized the
quality of the de novo annotation using the well-annotated
genomes of C. neoformans and C. deneoformans as ground-truth
inputs. We found that the quantity of data used should not be
too large and that the number of introns predicted had a positive,
linear relationship with the quality of the de novo annotation. We
used this pipeline to re-annotate the reference genome of the
RNAi-deficient Cryptococcus deuterogattii strain R265 using RNA-
seq data. Analysis of the transcriptome dynamics of these three
Cryptococcus species revealed that although the sense/antisense
transcript ratio is similar across all three species, intron retention
is higher in C. deuterogattii. Comparative gene content analysis
identified a list of genes that are absent or largely truncated in
R265, many of which have been implicated in RNAi-mediated si-
lencing in Cryptococcus species. Finally, we also identified several
primary metabolic gene clusters (MGCs) that are absent in R265
and associated this loss with the subtelomeric gene content. Our
data suggest an active exchange of MGCs between subtelomeric
regions and more central regions of the genome. This exchange
might contribute to the adaptive diversification of metabolite as-
similation potential in Cryptococcus.

Materials and methods
RNA-seq sample and data production
RNA-seq libraries from four growth conditions (exponential
phase at 30�C, þ exponential phase at 37�C, stationary phase at
30�C, and stationary phase at 37�C), conducted in triplicate, of C.

neoformans H99 and C. deneoformans JEC21 used in this study have

been previously described (Wallace et al. 2020). The C. deuterogattii

R265 strain was grown in YPD at 30�C and 37�C under agitation to

exponential or early stationary phase as previously described

(Wallace et al. 2020). Briefly, early stationary phase was obtained

after 18 h of growth (final OD 600¼ 15) starting from at

OD600¼ 0.5. Each Cryptococcus cell preparation was spiked in with

one-tenth (OD/OD) of S. cerevisiae strain FY834 cells grown in YPD

at 30�C in stationary phase. Cells were washed, snap frozen and

used to prepare RNA and total DNA samples. Biological triplicates

were prepared in each condition. For RNA-seq, strand-specific,

paired-end cDNA libraries were prepared from 10 lg of total RNA

following poly-A purification using the TruSeq Stranded mRNA

kit (Illumina) according to manufacturer’s instructions. cDNA

fragments of �400 bp were purified from each library and con-

firmed for quality by Bioanalyzer (Agilent). DNA-Seq libraries

were prepared using the kit TruSeq DNA PCR-Free (Illumina).

Then, 100 bases were sequenced from both ends using an

Illumina HiSeq2500 instrument according to the manufacturer’s

instructions (Illumina). For the mating condition, total RNA was

isolated (in biological triplicates) from a C. neoformans cross be-

tween the congenic mating partners H99 (MATa) and YL99

(MATa) (Semighini et al. 2011) or a C. deuterogattii cross between

the congenic mating partners R265 (MATa) and AIR265 (MATa)

(Zhu et al. 2013). Briefly, overnight cultures were grown under

standard laboratory conditions in YPD at 30�C. Overnight cul-

tures were diluted to an OD600¼ 1.0, and cells from both strains

were mixed, spotted onto V8 (pH ¼ 5) mating medium, and incu-

bated in the dark at room temperature for 48 h. Cells were

scraped from mating plates, snap frozen, and RNA was isolated

using Trizol following the manufacturer’s protocol. RNA quality

was confirmed by Bioanalyzer (Agilent) and RNA samples were

depleted of ribosomal RNA with the Ribo-Zero Gold rRNA

Removal Kit for Yeast (Illumina). Strand-specific, paired-end

cDNA libraries were prepared using the TruSeq Stranded mRNA

kit (Illumina), and 150 bases were sequenced from both ends us-

ing an Illumina HiSeq4000 instrument according to the manufac-

turer’s instructions (Illumina).

RNA-Seq library trimming and rRNA cleaning
The paired reads from the RNA-seq libraries were trimmed for

low-quality reads and Illumina TruSeq adapters were removed

with Cutadapt v1.9.1 (Martin 2011) with the following parame-

ters: –trim-qualities 30 –e (maximum error rate) 0.1 –times 3 –

overlap 6 –minimum-length 30. The cleaning of rRNA sequences

was performed with Bowtie2 v2.3.3 (Langmead and Salzberg

2012) with default parameters; unmapped paired reads were

reported using option –un-conc to identify reads that did not

align with rRNA sequences.

RNA-seq library mapping
The cleaned reads from RNA-seq paired-end libraries from C. neo-

formans H99, C. deneoformans JEC21, and C. deuterogattii R265 were

mapped against their reference genomes (NCBI Genome

Assemblies GCA_000149245.3, GCA_000091045.1, and

GCA_002954075.1) with Tophat2 v2.0.14 (Kim et al. 2013) and the

following parameters: minimum intron length 30; minimum in-

tron coverage 30; minimum intron segment 30; maximum intron

length 4000; maximum multihits 1; microexon search; and

library-type fr-firststrand or fr-secondstrand (according to the

RNA-seq library).
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Pipeline selection
The RNA-seq mapped reads from C. neoformans H99 and C. deneo-
formans JEC21 from the EXPO30 condition (exponential growth at
30�C) were tested in the three pipelines for gene prediction.
BRAKER1 (Hoff et al. 2016) was performed with the default param-
eters plus the exclusion of alternative transcripts (–alternatives-
from-evidence¼false) using the three replicates (A, B, and C) as
RNA-seq source. Cuff-CQ (Cufflinks v2.1.1 ((Trapnell et al. 2010))/
Coding Quarry v2.0 (Testa et al. 2015)) and C3Q (Cufflinks v2.1.1/
Cuffmerge/Coding Quarry v2.0) were tested with the basic
parameters: minimum intron length (30); maximum intron
length (4000); minimum isoform fraction (0.9); and overlap radius
(10). The merged BAM file generated by the three replicates (A, B,
and C) and used in the Cuff-CQ pipeline was obtained with
Samtools merge. C3Q was performed separately for the three BAM
files; the GTF files generated by the three predictions (for repli-
cates A, B, and C) were then combined by Cuffmerge and the
resulting transcripts were processed by CodingQuarry. The evalu-
ation of the pipeline sensitivity and precision for gene prediction
was performed by comparing the predicted annotations against
the H99 and JEC21 reference annotations (Wallace et al. 2020)
with the GFFCompare program (Pertea and Pertea 2020).

For a better understanding, the C3Q pipeline with the basic Cufflinks
parameters is named as C3Q1 protocol in the results section.

Cufflinks parameters selection
The selection of the best Cufflinks parameter combination was
also performed with EXPO30 RNA-seq libraries from C. neoformans
H99 and C. deneoformans JEC21 according to the C3Q pipeline. For
this, the Cufflinks transcript assembly generated for each
EXPO30 replicate (A, B, and C) was tested with fixed and variable
parameter combinations (Table 1). Subsequently, as established
for the C3Q pipeline, the predicted GTFs were merged and proc-
essed by CodingQuarry. All combinations include minimum in-
tron length 30; maximum intron length 4000; and minimum
isoform fraction 0.9; since we want to remove all isoforms. The

variable parameters include: pre-mRNA fraction 0.15 to 1.0; small

anchor fraction 0.0; minimum fragments per transfag 1; overlap

radius 1, 10 and 100; 3’ trimming (–trim-3-avgcov-thresh and –

trim-3-dropoff-frac) 0. The evaluation of the Cufflinks parame-

ters for sensitivity and specificity for gene prediction was per-

formed by comparison of the predicted annotations against the

H99 and JEC21 reference annotations with the GFFCompare pro-

gram.
For a better understanding, the C3Q pipeline with the “Q” Cufflinks

parameters (selected combination) is named as C3Q2 protocol in the

results section.

Gene predictions with H99 and JEC21 RNA-seq
libraries
The validation of this gene prediction system was evaluated by

applying the C3Q pipeline with the best-selected Cufflinks

parameters (“Q” combination) to all RNA-seq libraries from C. neo-

formans H99 and C. deneoformans JEC21. For H99, the 15 libraries

obtained from the five growth conditions were used (Exponential

phase at 30�C, Exponential phase at 37�C; Stationary phase at

30�C, Stationary phase at 37�C and Mating). For JEC21, we tested

12 libraries obtained from four growth conditions (Exponential

phase at 30�C, Exponential phase at 37�C; Stationary phase at

30�C and Stationary phase at 37�C).
The evaluation of the sensitivity and specificity for gene pre-

diction was performed by comparison of the predicted annota-

tions against H99 and JEC21 reference annotations with the

GFFCompare program.
For a better understanding, the C3Q pipeline with the “Q” Cufflinks

parameters and the RNA-seq libraries for all the sequenced conditions

(“ES3037M” for C. neoformans H99 and “ES3037” for C. deneoformans

JEC21) is named as C3Q3 protocol in the results section.
*ES3037M: Exponential phase at 30�C (EXPO30) þ Exponential

phase at 37�C (EXPO30) þ Stationary phase at 30�C (STAT30) þ
Stationary phase at 37�C (STAT37) þMating

Table 1 Cufflinks parameter combinations

A —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9
B —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—min-frags-per-transfag 1
C —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—pre-mrna-fraction 0.25
D —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—overlap-radius 10
E —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—overlap-radius 100
F —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—trim-3-avgcov-thres 0—trim-3-dropoff-frac 0.0
G —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—pre-mrna-fraction 0.25—overlap-radius 10—trim-3-avgcov-

thresh 0—trim-3-dropoff-frac 0.0
H —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—pre-mrna-fraction 0.25—overlap-radius 10—trim-3-avgcov-

thresh 0—trim-3-dropoff-frac 0.0—min-frags-per-transfag 1
I —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—pre-mrna-fraction 0.25—overlap-radius 1—trim-3-avgcov-

thresh 0—trim-3-dropoff-frac 0.0
J —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—pre-mrna-fraction 0.25—overlap-radius 10—trim-3-avgcov-

thresh 0—trim-3-dropoff-frac 0.0—min-frags-per-transfag 1
K —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—pre-mrna-fraction 0.25—overlap-radius 1—trim-3-avgcov-

thresh 0—trim-3-dropoff-frac 0.0—small-anchor-fraction 0.0
L —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—pre-mrna-fraction 0.50—overlap-radius 1—trim-3-avgcov-

thresh 0—trim-3-dropoff-frac 0.0—small-anchor-fraction 0.0
M—max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—pre-mrna-fraction 0.75—overlap-radius 1—trim-3-avgcov-

thresh 0—trim-3-dropoff-frac 0.0—small-anchor-fraction 0.0
N —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—pre-mrna-fraction 0.80—overlap-radius 1—trim-3-avgcov-

thresh 0—trim-3-dropoff-frac 0.0—small-anchor-fraction 0.0
O —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—pre-mrna-fraction 0.90—overlap-radius 1—trim-3-avgcov-

thresh 0—trim-3-dropoff-frac 0.0—small-anchor-fraction 0.0
P —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—pre-mrna-fraction 1.0—overlap-radius 1—trim-3-avgcov-

thresh 0—trim-3-dropoff-frac 0.0—small-anchor-fraction 0.0
Q —max-intron-length 4000—min-intron-length 30—min-isoform-fraction 0.9—pre-mrna-fraction 0.85—overlap-radius 1—trim-3-avgcov-

thresh 0—trim-3-dropoff-frac 0.0—small-anchor-fraction 0.0
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*ES3037: Exponential phase at 30�C (EXPO30) þ Exponential
phase at 37�C (EXPO30) þ Stationary phase at 30�C (STAT30) þ
Stationary phase at 37�C (STAT37)

Effect of different conditions on predictions
To evaluate the effect of the growth conditions on the predicted
annotation, we used combinations of RNA-seq libraries derived
from two, three, and four of the growth conditions for C. neofor-
mans H99 and of two and three of the growth conditions for C.
deneoformans JEC21. The predictions for each combination were
performed according to the C3Q pipeline and “Q” Cufflinks
parameters. The evaluation of the sensitivity and specificity for
gene prediction was performed by comparison of the predicted
annotations against H99 and JEC21 reference annotations with
the GFFCompare program.

Evaluation of the effect of the sequencing depth
on gene prediction quality
The evaluation of the effect of the sequencing depth on gene pre-
diction was performed by down sampling the three RNA-seq li-
braries from the EXPO30 condition (replicates A, B, and C) with
the tool PositionBasedDownsampleSam from Picard package
(https://broadinstitute.github.io/picard/). In this analysis, C. neo-
formans H99 and C. deneoformans JEC21 were used. According to a
random algorithm that downsamples BAM files, we used defined
fractions of 1, 5, 7.5, 10, 15, 20, 30, and 40 million reads for each
replicate. Subsequently, the predictions were performed accord-
ing to the C3Q pipeline with the Cufflinks “Q” parameter combi-
nation using the downsampled files. Evaluation of the sensitivity
and specificity of gene prediction was performed by comparison
of the predicted annotations against H99 and JEC21 reference
annotations with the GFFCompare program.

Gene predictions with downsampled H99 and
JEC21 RNA-seq libraries
Gene prediction using the downsampled BAM files from the RNA-
seq conditions was performed according to the C3Q pipeline with
“Q” Cufflinks parameters and the downsampled RNA-Seq align-
ment files for all C. neoformans H99 (Exponential phase at 30�C,
Exponential phase at 37�C, Stationary phase at 30�C, Stationary
phase at 37�C and Mating) and C. deneoformans JEC21 (Exponential
phase at 30�C, Exponential phase at 37�C; Stationary phase at
30�C and Stationary phase at 37�C) growth conditions. The down-
sampling of each replicate to 7.5 million reads was performed
with the Picard package, as previously described. Evaluation of
the sensitivity and specificity of gene prediction was performed
by comparison of the predicted annotations against H99 and
JEC21 reference annotations with the GFFCompare program.

For a better understanding, the C3Q pipeline with the “Q” Cufflinks
parameters and the subsampled BAM files from RNA-seq libraries for all
the growth conditions (“ES3037M” for C. neoformans H99 and “ES3037”
for C. deneoformans JEC21) is named as C3Q4 protocol in the results sec-
tion.

Characterization of novel and missed loci
The identification of novel and missed loci was performed with
the GFFCompare program using the reference annotations from
C. neoformans H99 and C. deneoformans JEC21 and the predicted
C3Q gene annotations. Evaluation of the functional annotation
(function, presence of domain signatures) of these sequences was
performed by Blastp and Interproscan search from Blast2GO
(Conesa et al. 2005). The expression quantification of these

sequences was performed with HTSeq-count (Anders et al. 2015)
with the following parameters –stranded yes -f bam -r pos -t CDS.

Deletion of dubious novel loci from predictions
Deletion of dubious novel sequences was tested with predicted
transcripts of 100, 150, 200, and 300 nt, as well as intronless
sequences of 300 nt from C. neoformans H99 and C. deneoformans
JEC21 C3Q predictions. The sequence deletion and evaluation of
the results was performed with an in-house AWK script and the
GFFCompare program. Deletion of genome-predicted sequences
without supporting reads and those with low FPKM values were
performed and evaluated with an in-house AWK script combined
with the HTSeq-count and the GFFCompare program. Deletion of
alternative transcripts from multi-transcript loci was also per-
formed with an in-house AWK script and GFFCompare. In this
process, we selected for transcripts predicted by Cufflinks with
supporting RNA-seq evidence. Of these selected transcripts, the
longest transcript was chosen. For the other genes predicted only
from genome sequencing (without RNA-seq evidence), the lon-
gest transcript was selected.

We assessed the sensitivity and specificity of the C3Q predic-
tions for C. neoformans H99 and C. deneoformans JEC21 against their
reference annotations to analyze the effect of dubious sequence
deletion. Filter combinations with the low numbers of remnant
novel transcripts and smaller reduction in the prediction quality
parameters were favored.

For a better understanding, the C3Q pipeline with the “Q” Cufflinks
parameters, the subsampled BAM from RNA-seq libraries for all the se-
quenced conditions (“ES3037M” for C. neoformans H99 and “ES3037”
for C. deneoformans JEC21), and the sequence filtering (sequences up to
150 nt, intronless sequences up to 300 nt, genome-predicted sequences
without reads and alternative transcripts) is named as C3Q5 protocol in
the results section.

Retrieval of deleted and non-predicted loci
The mapping of C. neoformans H99 protein sequences in the C.
deneoformans JEC21 genome and JEC21 protein sequences in the
H99 genome by Exonerate v2.2.0 program (https://www.ebi.ac.
uk/about/vertebrate-genomics/software/exonerate) with the fol-
lowing parameters (protein2genome –percent 30—bestn 1 –minintron
30—maxintron 4000 –showalignment false –showvulgar false –show-
targetgff true –refine region –subopt false) was performed to recover
sequences deleted in the previous filtering step with conserved
orthology in Cryptococcus. For this purpose, the mapped gene
coordinates matching previously predicted sequences
(GFFCompare program) were used to add these deleted genes to
the annotation with an in-house AWK script. The addition of
non-predicted genes was performed by comparing the mapped
protein sequence coordinates and the genomic regions without
predicted genes.

For a better understanding, the C3Q pipeline with the “Q” Cufflinks
parameters, the subsampled BAM from RNA-Seq libraries for all the se-
quenced conditions (“ES3037M” for C. neoformans H99 and “ES3037”
for C. deneoformans JEC21), the sequence filtering (sequences up to
150 nt, intronless sequences up to 300 nt, genome-predicted sequences
without reads and alternative transcripts), and the Exonerate-based re-
trieval of deleted and non-predicted genes is named as C3Q6 protocol in
the results section.

Automatization of the C3Q pipeline
The C3Q pipeline, an automatic gene predictor, was built with
Python3 code (C3Q_gene-predictor.py) and is available in Github
(https://github.com/UBTEC/C3Q)
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The C3Q pipeline includes all established parameters for
Cryptococcus genome annotation (C3Q6 protocol):

• The Cufflinks assembly of transcripts for each RNA-seq li-
brary.

• The merging of the generated GTF files by Cuffmerge.
• The GTF conversion to GFF format (needed for

CodingQuarry).
• The training and genome prediction by CodingQuarry, using

the merged GFF file and the reference genome.
• The sequence filtering: deletion of small transcripts up to 150

nt and intronless transcripts up to 300 nt; deletion of
genome-predicted sequences without supporting reads and
deletion of alternative transcripts from multi-transcript loci.

• The retrieval of deleted and non-predicted orthologous/paral-
ogous sequences by Exonerate (modified version with GFF3
support from https://github.com/hotdogee/exonerate-gff3).

Gene prediction in C. deuterogattii R265
Gene prediction in C. deuterogattii R265 was performed with the
C3Q pipeline (C3Q6 protocol) using the C3Q_gene-predictor.py
script. For this, the five RNA-seq triplicate libraries from C. deuter-
ogattii R265 (Exponential phase at 30�C, Exponential phase at
37�C, Stationary phase at 30�C, Stationary phase at 37�C and
Mating) were subsampled to 7.5 million reads each, and input
into the script in addition to the C. neoformans H99 and C. deneofor-
mans JEC21 protein sequences for the Exonerate step.

Concomitantly, manual correction of genes from chromo-
somes 9 and 14 was performed with the software Artemis (Carver
et al. 2012), the R265 genome (NCBI assembly GCA_002954075.1),
and the stranded paired-end RNA-seq data from C. deuterogattii
R265 in the five growth conditions.

The predicted annotation was evaluated by comparing it to
the manually corrected genes from chromosomes 9 and 14, as
well as the C. deuterogattii R265 annotations from Broad (NCBI as-
sembly GCA_000149475.3) and Ferrareze et al. (2017).

CDS gene coordinates from old annotations were also identi-
fied in the new sequenced genome with Exonerate aligner
(coding2genome). The predicted novel genes were named with
CNBG ID numbers above 10000. The statistics of the gene annota-
tions ware generated by AGAT script agat_sp_statistics.pl (https://
github.com/NBISweden/AGAT). The final annotation is available
in file S1.

Comparison of ortholog groups across
Cryptococcus species
Ortho-groups and genes unique to C. neoformans H99, C. deneofor-
mans JEC21 and C. deuterogattii R265 were evaluated with
Orthofinder v2.3.3 configured to use the Blast aligner. Gene size
comparisons were performed with orthologs and paralogs (if the
true ortholog was not known) obtained from the OrthoFinder
analysis (Emms and Kelly 2019), as well as gene sizes. For the ra-
tio calculation, the size (nt) of the R265 gene was divided by the
size (nt) of the H99 and JEC21 orthologous genes. The analysis of
conserved domains in unique sequences and the functional an-
notation of C. deuterogattii R265 were performed with Blast2GO
(Blastp, Interproscan and GO mapping).

Gene orientation analysis
To determine the frequency of tandem genes with the same ori-
entation, we searched for groups of two, three, four, or five genes
assigned to the same DNA strand in the GFF file from C. deutero-
gatti R265 (with our new annotation), C. neoformans H99 (Genome

assembly reference GCF_000149245.1), and C. deneoformans JEC21
(Genome assembly reference GCF_000091045.1) annotations.
This was performed by analyzing the orientation of each gene
pair in the GFF file from R265, H99 and JEC21, recording the fre-
quency of genes converging (tail-to-tail), diverging (head-to-
head), and in the same orientation (head-to-tail) in the whole ge-
nome and for each chromosome. This was executed using an in-
house Python script (script gene_organization_analysis.py).

Antisense transcription analysis
To evaluate the antisense transcription in the genomes analyzed,
we first generated a reversed annotation, which consisted of a
GFF file with genes assigned to the opposite strand of their actual
annotation. With the annotation and the reverse annotation, we
analyzed the percentage of antisense transcription for each
protein-coding gene using the software HTseq-count using the
following attributes (-f bam -r pos—s yes -t CDS -i ID -m intersection-
nonempty –nonunique none (.bam) (.gff)) and the distinct RNA-seq li-
braries. Sense/antisense counts ratios for each gene for each con-
dition were plotted. The script used for generation of a reverse
GFF is available (reverse_gff.py).

Intron retention evaluation
For a given intron, an IR index was calculated by determining the
ratio of spliced: non-spliced reads at the upstream and down-
stream exon-intron junctions and choosing the lowest of these
two numbers. These IR indices were calculated using RNA-seq
obtained from cells growing in each of the four growth condi-
tions. An intron was considered to be regulated by intron reten-
tion when the IR index was at least 0.01. We restricted our
analysis to introns with more than 10 spliced reads.

Statistical analysis
The proportion of genes with intron retention regulation was
compared amongst the distinct conditions using one-way
ANOVA followed by multi-comparison analysis corrected by FDR.
The X-squared analysis was conducted using R (version 4.0.2)
and plots were prepared using the corrplot package (version
0.84).

Data Availability
Raw and summarized sequencing data are available at SRA with
the accession number: PRJNA660459. The C3Q pipeline is avail-
able in Github (https://github.com/UBTEC/C3Q); Supplementary
files are available at FigShare (https://doi.org/10.25387/g3.
12901307). The final annotation of C. deuterogattii genome was
submitted to NCBI and is available on accessions CP025759.1 to
CP025772.1.

Results
Pipeline selection
We first compared the performance of two previously published
annotation pipelines used in coding gene de novo annotation in
intron-rich fungal genomes using RNA-seq data. The BRAKER1
pipeline, which combines GeneMark-ET (Lomsadze et al. 2014)
and Augustus (Stanke et al. 2008) and is already optimized with
the best prediction parameters (Hoff et al. 2016), was compared
with a genome annotation pipeline composed of Cufflinks v2.1.1
(Trapnell et al. 2010) and CodingQuarry v2.0 (Testa et al. 2015). We
used the C. neoformans H99 and C. deneoformans JEC21 genomes as
controls to assess of the performance of both pipelines
(Gonzalez-Hilarion et al. 2016; Wallace et al. 2020).

P. A. Gröhs Ferrareze et al. | 5

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/11/2/jkaa070/6080769 by U

niversidade Federal do R
io G

rande do Sul (U
FR

G
S) user on 23 N

ovem
ber 2023

https://github.com/hotdogee/exonerate-gff3
https://github.com/NBISweden/AGAT
https://github.com/NBISweden/AGAT
https://github.com/UBTEC/C3Q
https://doi.org/10.25387/g3.12901307
https://doi.org/10.25387/g3.12901307


For this analysis, we used only RNA-seq data obtained in bio-
logical triplicate from cells grown to exponential growth phase at
30�C in complete medium (YPD) (EXPO30) (Wallace et al. 2020).
Previously described BAM files obtained after alignment of
trimmed reads to the C. neoformans H99 genome were input into
the BRAKER1 and Cufflink-CodingQuarry pipelines (Wallace et al.
2020). For the Cufflink-CodingQuarry-based analyses, we used
two alternative protocols. In the first case, we first merged the
BAM files from each of the three replicates (CUFF-CQ protocol). In
the second case, each replicate BAM file was used to generate a
unique GTF prediction file, these files were then merged using
Cuffmerge and used by CodingQuarry as a single transcript
source (C3Q1 protocol) (Figure 1).

To compare the quality of these pipelines for identification of
coding genes, we calculated their sensitivity (percentage of cod-
ing genes present in the reference annotation overlapping with
one coding gene in the de novo annotation) and their specificity
(percentage of predicted coding genes overlapping with one cod-
ing gene in the reference annotation). These comparisons
revealed that BRAKER was much more sensitive than either
Cufflinks-CodingQuarry protocol, missing only 91 coding genes in
the C. neoformans genome (Figure 2A and Supplementary Table
S1). However, the BRAKER pipeline was less specific (91.4%), pre-
dicting 622 coding genes absent in the reference annotation
(Figure 2B). In contrast, both Cufflink-CodingQuarry protocols
missed more coding genes (743 and 447 genes for CUFF-CQ and
C3Q protocols, respectively), but had a higher (95%) specificity
(Figure 2, A and B). We observed a similar pattern when we
looked at CDS introns and CDS exons within the identified refer-
ence genes. Again, the BRAKER pipeline was very sensitive, with
only 0.4% missed introns (n¼ 157) and 0.4% missed exons
(n¼ 164) in the prediction but had poor specificity, with 4471
novel introns and 3065 exons predicted but not present in the ref-
erence annotation (Figure 2, A and 2B; Supplementary Table S1).
On the other hand, both Cufflink-CodingQuary-based protocols
missed more introns (n¼ 4944 and n¼ 3238 for CUFF-CQ and

C3Q1 protocols, respectively) and more exons (n¼ 4281 and
n¼ 2777, respectively) but both were more specific, predicting
less than 200 introns or exons not present in the reference anno-
tation. Overall, both Cufflink-CodingQuary-based protocols
returned more conservative results; they were more specific in
the predicted gene structures and identified a smaller number of
new insertions (novel exons/introns) and new genes. These more
conservative predictions came at the cost of missing a larger
number of features than the BRAKER protocol.

To assess all of these performance parameters and select the
highest-performing protocol for further optimization, we consid-
ered the sensitivity and specificity of accurately predicting gene
structure (perfect exon/intron organization) for each of the three
pipelines. The C3Q1 protocol was the most sensitive, perfectly
predicting the exon-intron layout of 66.5% (n¼ 4516) of C. neofor-
mans H99 genes, compared to 65.2% and 51.9% perfect predic-
tions from the BRAKER and CUFF-CQ protocols, respectively
(Figure 2C). This was also the most specific protocol with 63.9% of
the predicted genes perfectly fitting the reference gene struc-
tures, compared to 61.3% and 52.6% of the predictions made by
the BRAKER and CUFF-CQ protocols, respectively (Figure 2C). To
better compare the quality of these pipelines, we considered a
quality index that multiplied the sensitivity by the specificity of
predicted gene structure predictions (Figure 2D). Our results
showed that the C3Q1 pipeline was the best, with a quality index
of 0.42. We performed the same analysis with the C. deneoformans
JEC21 genome annotation data and obtained similar results, con-
firming the C3Q1 protocol was the best protocol for further opti-
mization (Supplementary Figure S1).

Optimization of the C3Q1 pipeline
Effect of cufflinks settings
To improve both the number of perfectly predicted gene struc-
tures and the percentage of predicted loci in perfect agreement
with the reference coding gene structures, we considered 17 com-
binations of Cufflinks settings. We varied parameters including

Figure 1 Schematic of the different pipelines tested in this study.
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(1) the minimum distance between transfags allowed to merge,
(2) trimming of 3’ ends of reads, (3) filtering of alignments that lie
within intronic intervals, (4) filtering of suspicious spliced reads,
(5) minimum RNA-seq fragments allowed to assemble transfags,
and (6) filtering of alignments that lie within intronic intervals in
the same set of RNA-seq data. These Cufflinks parameter modifi-
cations reduced the number of missed genes and increased the
number of reference genes identified from 6348 to 6462
(Supplementary Table S1). Using the final settings, the pipeline
C3Q2 quality index reached a score of 0.473, with 70.8% of refer-
ence gene intron-exon structures perfectly predicted and 66.8%
of the predicted genes perfectly matching the reference exon-
intron gene structures (Figure 2D).

Effect of the RNA-seq data set
We tested the C3Q2 optimized pipeline using additional RNA-seq
data obtained under five different conditions in triplicate: sta-
tionary growth at 30�C (STAT30) and 37�C (STAT37), exponential
growth at 30�C (EXPO30) and 37�C (EXPO37), and growth under
mating conditions (Mating). Each RNA-seq data set generated a
similar number of predicted transcripts, ranging between 7049
genes using the STAT37 set up to 7199 loci using the EXPO30 data
set (Supplementary Table S1). When compared to the reference
set of genes, the number of predicted annotations were also very
similar (Supplementary Table S1). As expected, including more
samples improved the annotation quality. The usage of the five
conditions improved the C3Q3 annotation quality index to 0.547
despite the fact that more predicted genes not present in the ref-
erence genome were identified using this pipeline (n¼ 510)
(Figures 2D, Supplementary S2, and Supplementary Table S1).
Similar results were obtained using the C. deneoformans JEC21

annotation and RNA-seq data (Supplementary Figure S1 and

Supplementary Table S1).

Evaluation of RNA-Seq data set size in gene prediction qual-
ity
Analysis of the results obtained using the C3Q2 pipeline fed with

individual replicates of the EXPO30 RNA-seq data counterintui-

tively suggested the size of the initial BAM file might be nega-

tively correlated with the quality of the final prediction

(Supplementary Table S1). Identical analysis performed with C.

deneoformans RNA-seq gave a similar result, suggesting the se-

quencing depth may substantially affect the quality of predic-

tions and should be considered as a possible parameter of

optimization for gene prediction pipelines. To improve the analy-

sis of the effect of the size of the data set on the quality of gene

prediction, the C3Q2 pipeline was tested with different represen-

tative fractions of reads from a single EXPO30 replicate. Thus,

replicate samples with 1, 5, 7.5, 10, 15, 20, 30, and 40 million reads

were used for de novo annotation of the C. neoformans H99 ge-

nome, and the quality of the gene predictions were compared.

We performed this analysis using the same strategy for C. deneo-

formans. As shown in Figure 3, the quality of the gene structure

prediction was highly dependent on the size of the RNA-seq ini-

tial data set in both species and strongly anti-correlated with the

number of Cufflinks-assembled transcripts (Supplementary

Table S1). The highest-quality predictions were obtained with

replicate samples with only 5–10 million reads. Using this ad-

justed read depth, the prediction showed improvement in nearly

all parameters, including for missed genes, missed exons, and

missed introns (Supplementary Table S1).

Figure 2 Sensitivity (A) and specificity (B) of the different tested pipelines for Cryptococcus neoformans H99 genomic feature identification. For introns and
exons, calculations were done using only genes that were both identified by the pipelines and present in the reference annotation. (C) Sensitivity and
specificity of gene structure predictions using the three annotation pipelines. (D) Optimization of the C3Q pipeline. C3Q1 is the pipeline using default
settings. C3Q2 through C3Q6 refer to the results obtained after each step of the pipeline optimization.
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We adjusted the number of reads to 7.5 million for each repli-
cate in each condition and used these adjusted RNA-seq data
sets for de novo annotation of the C. neoformans and C. deneofor-
mans reference genomes. As expected, the gene predictions
obtained with the C3Q4 pipeline were further improved with a
quality index of 0.593 and 0.596, for C. neoformans and C. deneofor-
mans annotations, respectively (Figure 2D, Supplementary Figure
S1 and Table S1). In C. neoformans, 81.9% of the reference gene
structure was perfectly predicted and only 1.9% (n¼ 129) of genes
were missed.

Gene filtering
Each optimization step improving the quality of the gene predic-
tion was also associated with an increase of the number of pre-
dicted genes not present in the previously annotated reference
genome (Supplementary Table S1). Using the C3Q5 protocol, 717
(703 loci) and 774 (762 loci) additional genes were predicted in C.
neoformans and C. deneoformans, respectively, compared to the ref-
erence annotation. The majority of these genes are likely to be
misannotations. One hundred and six of the sequences had do-
main signatures of transposable elements, suggesting they corre-
spond to fragments of transposons or retrotransposons
unannotated in the reference H99 genome. To filter out some of
the novel predicted genes, we looked at their structure and cover-
age. We compared the characteristics of these false-positive
genes to the reference genes and found that most novel predicted
genes were short (219 nt mean length, 112 nt median length),
poorly expressed, and intronless. We tested different filters alone
and in combination to eliminate as many false positive genes as
possible without affecting the number of correctly predicted
ones; the results are presented in Supplementary Table S1. In
both species, the best combination of filters eliminated all spliced

coding regions smaller than 150 nt, all intronless genes smaller
than 300 nt, and all genome-predicted genes not supported by
any RNA-seq reads. Due to the presence of secondary transcripts
at some loci, many of which were generated due to differences in
the RNA-seq-predicted and genome-predicted transcripts for the
same gene, a fourth filtering step was performed. In this step, to
ensure that there was only one transcript per loci, the longest
RNA-seq-predicted transcript or the longest genome-predicted
transcript (for loci without RNA-seq evidence) was selected as a
representative for the gene CDS coordinates. After this fourth fil-
tering step, the number of predicted genes not present in the ref-
erence annotation was down to 409 and 427 genes in H99 and
JEC21, respectively, and the quality index of the annotation in-
creased to 0.614 and 0.608, respectively (Figures 2D,
Supplementary S1, and Table S1).

Exonerate-based recovery of missed genes
Improvement of the pipelines was associated with an increase in
the sensitivity of gene identification. In the initial C3Q1 protocol,
447 reference genes were missed, whereas only 162 H99 genes
and 132 JEC21 genes were missed with the C3Q5 pipeline.
Blast2GO analysis of the protein sequences encoded by the
missed genes identified 16 proteins with conserved domains sug-
gesting that it might be possible to identify some of them through
comparative sequence analysis. Another 111 sequences were de-
fined as hypothetical proteins. We first used the sequence align-
ment program Exonerate (Slater and Birney 2005) and the JEC21
reference proteome as a reference to try to recover missed coding
genes in H99. As expected, this analysis identified a number of
missed loci, but also added a number of unpredicted loci thus re-
ducing the quality of the annotation. In the final C3Q6 pipeline,
we chose to restrict this Exonerate analysis to genes that had

Figure 3 Effect of the size of the BAM file on the quality of the predicted annotation and on the number of correctly predicted genes in Cryptococcus
neoformans H99 and C. deneoformans JEC21.
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been filtered out in the last step of the C3Q5 pipeline. We ulti-
mately identified 14 and 9 novel genes in H99 and JEC21, respec-
tively. Overall, the C3Q6 optimized pipeline was able to identify
nearly 98% of genes in H99, contributing only 410 (�6%) novel
genes. Importantly, the exon-intron structure of the predicted
genes was predicted perfectly for >81% of the reference genes in
both species.

Intron number is predictive of the quality of the
C3Q6 predicted annotation
During the course of the C3Q pipeline optimization, we obtained
88 versions of the H99 genome annotation. We carefully exam-
ined the different characteristics of these annotations, looking
for a parameter predictive of their quality. First, we plotted the
number of predicted loci against the quality of the annotation,
but we did not observe any correlation. Similar results were
obtained when we looked at missed or novel loci, suggesting that
these parameters were also not indicative of the annotation qual-
ity. However, when the numbers of introns predicted were plot-
ted against the quality of the annotation, we obtained a linear
correlation (Figure 4). This correlation was lost during the filtra-
tion steps (red dots), which tend to reduce the number of introns.
Similar results were obtained for JEC21, suggesting that the num-
ber of introns is a good parameter to consider when evaluating
the quality of the annotation using the C3Q pipeline.

Genome annotation of the C. deuterogattii genome
We used the C3Q6 optimized pipeline to generate a new genome
annotation for the C. deuterogattii reference strain R265. This ref-
erence strain was isolated in 2001 from the bronchoalveolar la-
vage fluid of an infected patient from the Vancouver Island
outbreak (Kidd et al. 2004). Because of its outbreak origin and the
loss of a functional RNAi pathway (D’souza et al. 2011), C. deutero-
gattii has been the focus of a number of studies in recent years
(Cheng et al. 2009; Ma et al. 2009; Ngamskulrungroj et al. 2012;
Huston et al. 2013; Lam et al. 2019). The R265 genome has been
previously annotated three times (D’souza et al. 2011; Farrer et al.
2015; Ferrareze et al. 2017), but a recent release of telomere-to-
telomere genome sequence data (Yadav et al. 2018) motivated us
to generate an updated annotation. We generated RNA-seq data
in biological triplicate from cells grown under five conditions (ex-
ponential growth phase at 30�C and 37�C, stationary growth
phase at 30�C and 37�C, and under mating conditions) as previ-
ously described for C. neoformans H99 and JEC21 (Wallace et al.

2020). Reads were trimmed, aligned to the reference genomes
(Supplementary Table S2), and input into the optimized C3Q6 ge-
nome annotation pipeline.

To gain further insight into the quality of our updated R265
annotation, the structure predictions of genes for C. deuterogattii
R265 chromosomes 9 and 14 were manually curated through vi-
sual examination of read alignments using Artemis (Carver et al.
2012) as previously described (Janbon et al. 2014; Gonzalez-
Hilarion et al. 2016). We compared this manually curated annota-
tion of chromosomes 9 and 14 with the prediction obtained from
the C3Q6 genome annotation pipeline of these two chromo-
somes. This analysis revealed a quality index of this annotation
of 0.51, with 68% of all predicted loci correctly predicted and 75%
of the manually curated genes on these two chromosomes cor-
rectly predicted. In C. neoformans and C. deneoformans, the C3Q6
genome annotation pipeline missed very few genes (1.4% missed)
and predicted a small number of false-positive genes (6.3%)
(Supplementary Table S3). As expected, the quality of the C3Q6
annotation was much better than previously published annota-
tions (Ferrareze et al. 2017; Farrer et al. 2019) (Supplementary
Table S3).

Manual curation of R265 annotation
To systematically analyze critical points of the automated C. deu-
terogattii R265 gene prediction, four sets of data were evaluated
and selected for manual correction: (1) Exonerate-retrieved
sequences (deleted and non-predicted), (2) predicted novel loci,
(3) genes predicted in merged/split loci, and (4) small and poten-
tial pseudogenes. During the course of this manual curation of
chromosomes 9 and 14, visual examination of the aligned reads
revealed a number of loci at which the genome sequence did not
entirely align with the RNA-seq reads, suggesting there were
errors in the reference genome assembly. These errors were re-
sponsible for gene shortening or splitting and might partially ex-
plain the lower quality index score calculated for the R265
predicted annotation of chromosomes 14 and 9 compared to the
quality scores obtained using similar data from JEC21 and H99.
To systematically identify these types of annotation mistakes, we
compared the size of the C. deuterogattii R265 predicted genes
with their C. neoformans H99/C. deneoformans JEC21 orthologous
counterparts. We identified 729 genes in R265 that were signifi-
cantly smaller than their C. neoformans and C. deneoformans ortho-
logs (size ratio < 0.8). Visual examination of these loci revealed
that most of them were incorrectly predicted and needed manual
curation. Manual curation was also performed for 67 genes that
were significantly smaller than only one of their orthologs (C. neo-
formans or C. deneoformans). This manual curation also identified
125 genes which would have otherwise been challenging to pre-
dict due to genome sequence errors mistakenly affecting ortholog
size ratios (Supplementary Table S4).

Overall, our new version of R265 genome annotation contains
6405 coding genes with 33,619 introns in CDS regions (34,512
introns including the UTRs). The manually corrected genes from
chromosomes 9 and 14 were added and replaced the predicted
genes from these regions, improving the quality of the final anno-
tation. Of the 6405 genes predicted with the C3Q6 pipeline, the
CDS structure was modified for 873 coding through manual cura-
tion. Annotation of 3’UTR and/or the transcript leader sequence
was performed for 1210 genes from the manually curated chro-
mosomes (9 and 14) and the 873 manually curated genes with
modified CDS structures. Furthermore, we annotated 55 lncRNAs
and used tRNAscan (Lowe and Chan 2016) to annotate 161 tRNAs
(Supplementary Table S3). We also removed all genes predicted

Figure 4 Relationship between the quality index of the H99 annotation
and the number of introns and transcripts predicted. The red points
correspond to the filtering steps of the optimization pipeline.
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to reside within centromeric regions, and used previously pub-
lished, manually curated annotations for these regions (Yadav
et al. 2018).

Putative pseudogenes and missing genes
We compared the gene content across the three annotated
Cryptococcus genomes. We identified 5870 ortho-groups common to
all three species (Figure 5). We found a similar number of R265-
specific genes to the number of specific genes identified in H99 and
JEC21, which is likely an indicator of the high quality of this anno-
tation. Of interest, this analysis revealed 210 ortho-groups missing
in C. deuterogattii R265, but present in both the C. neoformans H99
and the C. deneoformans JEC21 genomes (Supplementary Table S5).
This list of genes was curated first through Exonerate-based analy-
sis and then through manual examination of the syntenic loci.

C. deuterogattii R265 has previously been shown to lack a func-
tional RNA interference pathway (D’souza et al. 2011; Billmyre
et al. 2013). Accordingly, the genes encoding one Dicer (DCR1) and
an Argonaute protein (AGO1) have been lost, and the genes
encoding an RNA dependent RNA polymerase gene (RPD1) and an
RNAi essential zinc finger protein (ZNF3) are truncated and prob-
ably not functional in this strain (D’souza et al. 2011; Feretzaki
et al. 2016). The identification of truncated or absent genes in the
R265 genome has been as a strategy to identify additional, novel
components of the RNAi pathway in C. neoformans (Feretzaki et al.
2016). To identify genes specifically lost in C. deuterogattii, we con-
sidered the genes not predicted by our pipeline but present in the
other Cryptococcus species annotations available in FungiDB
(D’souza et al. 2011; Farrer et al. 2015; Basenko et al. 2018). We con-
sidered here C. tetragattii strain IND107, C. bacillisporus strain
CA1873, and C. gattii strains WM276, NT-10, and EJB2; no C. deca-
gatiii annotation was available at the time of this study. We iden-
tified 17 ortho-groups that were absent in the R265 genome but
present in all other species (Table 1). As expected, one ortho-
group corresponds to an Argonaute protein (ortho-group
OG0000415). We also confirmed that the gene FCZ28, which
encoded a transcription factor essential for the sex-induced-
silencing RNAi pathway in C. neoformans, was specifically absent
in the R265 genome (Feretzaki et al. 2016). In contrast, the gene
GWO1, previously identified as specifically lost in R265 and cod-
ing for an Ago1-interacting protein (although deletion mutants
have normal siRNA profiles) was not present in this new list due
to its absence in the IND107 genome (Dumesic et al. 2013). The
ortholog size ratio analysis performed to pinpoint genome

sequence mistakes eventually identified 119 R265 genes with a
size ratio lower than 0.8 compared to both C. neoformans and C.
deneoformans orthologs or shortened in one species and absent in
the other (Table 2 and Supplementary Table S7). Although some
loci are likely pseudogenes, we decided not to annotate them as
such because there is no strict structural definition of what con-
stitutes a pseudogene (Tutar 2012) and we cannot evaluate the
functionality of a gene based on its structure alone.

As expected, the RNAi genes RPD1 (Wang et al. 2010), ZNF3
(Feretzaki et al. 2016), CPR2 (Feretzaki et al. 2016), QIP1 (Dumesic
et al. 2013), GWC1 (Dumesic et al. 2013), RDE4, and RDE5 (Burke et al.
2019) were present in this list, confirming that a large number
RNAi genes are not functional or are absent in R265. Conversely,
RDE1, RDE2, and RDE3 (Burke et al. 2019), which were recently impli-
cated in RNAi in C. neoformans, all possess an ortholog of similar
size in R265 (CNBG_3369, CNBG_4718, and CNBG_1922, respec-
tively). Of note, in this version of the R265 annotation, the DMT5
(CNBG_3156) gene encoding a putative DNA methyltransferase is
not truncated as previously published (Yadav et al. 2018; Catania
et al. 2020) and appears to be expressed and functional.

Gene organization, antisense transcription, and
alternative splicing in R265
The absence of RNAi in R265 was recently shown to be associated
with a modification of the chromosome structure: shorter centro-
meres and the loss of any full-length transposable elements
(Yadav et al. 2018). Here, we examined the possible consequences
of RNAi loss on the transcriptome aside from the expected ab-
sence of siRNA. We first hypothesized that the absence of RNAi
in C. deuterogattii could result in increased antisense transcrip-
tion, as it might be the source of double-stranded RNA; increased
antisense transcription in RNAi-deficient species has also been
observed in Saccharomyces species (Alcid and Tsukiyama 2016).
We thus evaluated the sense/antisense transcript ratio at coding
gene loci. Because the 3’UTR and TL sequences were only par-
tially annotated in the R265 genome, we restricted our analysis to
the CDS regions. We compared the ratio of read numbers of sense
and antisense transcripts corresponding to all coding regions in
C. neoformans, C. deneoformans, and C. deuterogattii under four
growth conditions. When cells were grown to exponential growth
phase at 30�C (E30), most of the expressed genes (92.2%) had anti-
sense transcription in C. neoformans, but antisense transcripts
were expressed at a very low level (1.2% of transcription anti-
sense vs sense). Antisense transcription prevalence and expres-
sion levels were similar in the two other species (92.6% and 95.2%
of genes with antisense transcription, 3.2% and 2.5% of antisense
vs sense transcription in C. deneoformans and C. deuterogattii, re-
spectively). These ratios changed in different growth conditions,
particularly increased temperature at both exponential and sta-
tionary growth phase. However, this analysis did not provide evi-
dence of a link between the level of antisense transcription and
the absence of RNAi in R265 because the RNAi-proficient JEC21
strain had the highest antisense/sense transcription ratio across
all conditions tested (Figure 6).

We then analyzed gene orientation in the three species, evalu-
ating the number of genes coupled in a tail-to-tail orientation as
this orientation should favor antisense transcription over head-
to-tail or head-to-head orientations. Indeed, as shown in
Figure 6B, there was a clear selection against tail-to-tail gene ori-
entation in C. deuterogattii, thus limiting antisense transcription
(c-squared ¼ 103.79, df ¼ 4, P < 2.2e–16). In contrast, this orienta-
tion is favored in JEC21, which might explain the higher level of
antisense transcription.

Figure 5 Comparative gene content of the annotated C. neoformans H99,
C. deneoformans JEC21, and C. deuterogattii R265 genomes. Ortho-groups
specific or common to the different species were identified and
numbered.
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The SCANR model predicts that siRNAs are produced in re-
sponse to poorly spliced introns that stall the spliceosome com-
plex, which should result in lower levels of expression for the
corresponding gene (Dumesic et al. 2013). To explore whether loss
of RNAi could have affected intron retention (IR) in C. deuterogatiii,

we compared the number of CDS introns regulated by intron re-
tention in this species and two RNAi-proficient ones.
Interestingly, in three conditions the percentage of introns regu-
lated by IR was higher in R265 than in JEC21 or H99 (Figure 6C).
For instance, when cells were grown to exponential phase at 37�C,
44.5% of R265 introns are regulated by IR as compared to 21.7%
and 20.8% in C. neoformans and C. deneoformans, respectively. In
contrast, the IR indices were similar across the three species
when cells were grown at 30�C. However, at 37�C in either expo-
nential and stationary growth phase, the median value of the IR

index in R265 was higher than those in both C. neoformans and C.
deneoformans. Overall, these data suggest that IR is better tolerated
in R265 than in H99 or JEC21; this result aligns with the SCANR
model of siRNA production and gene regulation in Cryptococcus.

Subtelomeric gene organization and cluster
exchange in Cryptococcus
Our analysis identified 210 ortholog groups present in both C. neo-
formans and C. deneoformans but absent in C. deuterogattii.

Interestingly some of these lost genes are clustered in these
genomes. We identified 21 clusters of lost genes with consecutive
elements in both C. neoformans and C. deneoformans reference
genomes. One of these lost clusters has been previously described
and has been reported to contain homologues of several GAL
genes (GAL1, UGE2, and GAL7) and a gene encoding a sugar trans-
porter of the major facilitator superfamily (MFS) (CNAG_07897)
(Slot and Rokas 2010). We also identified a fifth gene in this clus-
ter (CNAG_06055) which encodes a putative alpha-1,4-
galactosidase (Supplementary Figure S2A). C. neoformans and C.
deneoformans also possess unclusterered paralogs of the genes
UGE2 (UGE1, CNAG00697), GAL1 (GAL101, CNAG_03946), and
GAL7 (GAL701, CNAG_03875). Previous studies have shown UGE2
is required for growth on galactose, whereas it paralogous gene
UGE1 is necessary for growth at 37�C and glucuronoxylomanno-
galactan (GXMGal) biosynthesis, which makes up an important
fraction of the Cryptococcus polysaccharide capsule (Moyrand et al.
2008). Interestingly, we previously reported that a uge2D mutant
strain was able to grow on galactose at 37�C, suggesting that
UGE1 is able to compensate in the absence of UGE2 at 37�C. The
GAL cluster with five genes has also been lost in all other
Cryptococcus species that were assessed. Thus, the C. gattii clade
species possess the only non-clustered paralogs of the GAL path-
way; yet, they are all able to grow on galactose as a sole carbon

Table 2 Genes with putative or known roles in RNAi identified as genes of H99 with orthologs in all Cryptococcus species but absent or
severely truncated (and thus putative pseudogenes) in C. deuterogattii R265 as compared to JEC21 and H99 (proteins with a ratio <0.33
are presented

H99 gene ID R265 gene ID Size ratio Putative function Role in RNAi ref

CNAG_00505 Absent Transcription factor (FZC28) Yes (1)
CNAG_01061 Absent Serine/threonine protein kinase (FRK102) ? (2)
CNAG_02207 Absent Glycosyl hydrolase ?
CNAG_03734 Absent Chromodomain-containing protein (CDP1) ? (1)
CNAG_04016 Absent Identified spore protein 5 (ISP5) ? (3)
CNAG_04596, CNAG_04619 Absent Prolyl endopeptidase ?
CNAG_04609 Absent Argonaute protein (AGO1) Yes (4)
CNAG_05158 Absent Hypothetical protein ?
CNAG_05265 Absent Hypothetical protein ?
CNAG_05449 Absent Copper metallothionein 1 (MTN1) ? (5)
CNAG_05657 Absent 2,4-Dienoyl-CoA reductase ?
CNAG_06233 Absent Hypothetical protein ?
CNAG_06395 Absent Hypothetical protein ?
CNAG_06609 Absent 2-Polyprenyl-6-methoxyphenol hydroxylase (ORX1) ? (1)
CNAG_07556 Absent Hypothetical protein ?
CNAG_07702 Absent F-box containing protein ?
CNAG_07959 Absent GTPase-activator protein (GAP) ?
CNAG_03466 CNBG_2143 0.083 RNA-dependent RNA polymerase 1 (RDP1) Yes (4)
CNAG_02700 CNBG_9326 0.092 C2H2-type zinc finger transcription factor (ZNF3) Yes (1)
CNAG_01423 CNBG_5946 0.102 QIP1 Yes (6)
CNAG_04146 CNBG_2894 0.121 SET domain-containing protein ?
CNAG_06486 CNBG_4982 0.137 GWC1 Yes (6�

CNAG_03911 CNBG_9603 0.139 Carboxylesterase domain-containing protein ?
CNAG_06497 CNBG_4974 0.162 Microsomal epoxide hydrolase (MEH1) ? (1)
CNAG_01992 CNBG_2960 0.190 SET domain-containing protein ?
CNAG_03117 CNBG_2464 0.191 Hypothetical protein ?
CNAG_07344 CNBG_9031 0.197 Ras guanyl-nucleotide exchange factor ?
CNAG_01406 CNBG_5961 0.198 Hypothetical protein ?
CNAG_03414 CNBG_10064 0.201 REX4-like exonuclease domain containing protein ?
CNAG_04184 CNBG_2860 0.224 Transcription factor (FZC47) No (1)
CNAG_03193 CNBG_9232 0.233 Hypothetical protein ?
CNAG_04400 CNBG_9268 0.234 Ribosomal protein S10p/S20e ?
CNAG_03938 CNBG_5530 0.243 Cryptococcus pheromone receptor 2 (CPR2) Yes (1)
CNAG_00123 CNBG_9042 0.286 Hypothetical protein ?
CNAG_06159 CNBG_4866 0.315 Hypothetical protein ?
CNAG_01004 CNBG_0584 0.316 Rho/Rac/Cdc42-like GTPases ?
CNAG_06509 CNBG_4963 0.318 Hypothetical protein ?

The full table of shortened genes is presented as Supplementary Table S6). (1) (Feretzaki et al. 2016); (2) (Lee et al. 2016); (3) (Huang et al. 2015); (4) (Wang et al. 2010);
(5) (Ding et al. 2011); (6) (Dumesic et al. 2013).
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source, suggesting these genes are involved in both GXMGal syn-

thesis and galactose assimilation in this species (Supplementary

Figure S2B).
Gene ontology (GO) term enrichment analysis (Priebe et al.

2015) of 52 genes within 18 non-subtelomeric clusters that were

absent in R265 revealed a statistically significant enrichment of

genes coding for proteins implicated in transport and transcrip-

tion regulation (Figure 7A). Functional annotation of these genes

confirmed this result (Supplementary Table S7). We identified 13

clusters containing at least one gene coding for a putative trans-

porter, including six MFS-type transporters, and eight clusters

containing at least one gene coding for an annotated or putative

transcription factor (TF), including six fungal Zn(2)-Cys(6) binu-

clear cluster domain-containing TFs. Overall, seven clusters con-

tain both a transporter and a TF (Figure 7B and Supplementary

Figure S3). Strikingly, this association between transporters and

TFs resembles the organization of primary metabolic gene clus-

ters (MGCs) (Rokas et al. 2018). Because three MGCs were located

within subtelomeric loci, we compared the gene content within

subtelomeric regions to the gene content of the lost clusters. We

considered the 20 most distal genes of each chromosome arm in

H99. GO term enrichment analysis of these 560 H99 subtelomeric

genes revealed very similar profiles to the profiles obtained for

the cluster genes. Again, genes coding for proteins implicated in

transport in subtelomeric regions were significantly enriched

(Figure 7C).
Functional annotation of these subtelomeric genes confirmed

this enrichment of transporters and TFs (Supplementary Table

S8). We found an unexpected number of genes encoding anno-

tated or putative TFs (n¼ 33) and transporters (n¼ 68) within

these regions of the H99 genome. Most of these TFs and trans-

porters belong to the fungal Zn(2)-Cys(6) binuclear cluster

Figure 6 (A) Antisense/sense transcription ratios in C. neoformans (H99), C. deneoformans (JEC21) and C. deuterogattii (R265). RNA-seq data obtained from
cells grown to exponential phase at 30�C (E30) and 37�C (E37) or stationary phase at 30�C (S30) and 37�C (S37) were used. (B) Statistical analysis
(Pearson’s Chi-squared test) revealed a species-specific bias in gene orientation. Circle size is proportional to the standardized residuals, with absolute
values higher than 2 representing statistical significance (Sharpe 2015). Positive values (blue circles) in cells specify a positive association between the
corresponding row and column variables. Negative residuals are represented by red circles. This implies a negative association between the
corresponding row and column variables. (C) Intron retention level in each species according to growth condition. Black bars represent median values.
(D) Percentage of CDS introns regulated by IR in each species according to growth condition. The results of the statistical analysis (ANOVA one-way
multi-comparison analysis corrected by FDR). * (q < 0.05), ** (q < 0.01), *** q < 0.001), **** (q < 0.0001).
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domain-type (n¼ 24) and MFS-type (n¼ 49) families, respectively.
Comparison of the organization of C. neoformans H99 subtelo-
meric loci to those in C. deneoformans JEC21 revealed a very simi-
lar organization, and only four mosaic subtelomeric regions were
identified with genes from at least two different regions in H99;
few genes were present in H99 but absent in JEC21 (Figure 8).
However, we did identify two duplicated regions in the JEC21 sub-
telomeric regions. The first duplicated locus consists of six genes
with orthologs in subtelomeric region of the left arm of Chr 5 in
H99. The second duplicated region has been previously described
(Fraser et al. 2005). It is located in the left arms of Chrs 8 and 12
and resulted from a telomere-telomere fusion that occurred dur-
ing the construction of the JEC20/JEC21 congenic mating pair.
Interestingly, a TF with a fungal Zn(2)-Cys(6) binuclear cluster do-
main (FZC2, CNAG_05255) and a putative amino acid transporter
(CNAG_05254) are present within this repeated region.
Conversely, genes in the subtelomeric regions of the right arms of
H99 Chrs 4 and 14 are orthologs of genes located within a central
part of JEC21 Chr 8 (Supplementary Figure S3), suggesting an ad-
ditional telomere-telomere fusion event. In contrast, the subtelo-
meric regions in R265 have undergone more rearrangements

compared to JEC21—in R265 there are 15 mosaic subtelomeric
regions that contain genes from at least two different regions in
H99. We also identified nine genes within six R265 subtelomeric
regions whose orthologs are located far from the telomeres in
H99. Interestingly, functional annotation of the R265-specific
subtelomeric gene clusters (n¼ 12) (Figure 8 and Supplementary
Table S9), revealed an enrichment of genes encoding TFs (n¼ 2)
and transporters (n¼ 6).

Subtelomeric regions have been shown to be silenced by
H3K27me3 histone modifications in C. neoformans, and a large
number of genes that are upregulated upon deletion of the
H3K27 methyltransferase (encoded by EZH2) are located within
subtelomeric regions (Dumesic et al. 2015). Accordingly, we ob-
served that expression of the 580 most proximal genes was gen-
erally lower than the expression of the most telomere-distal
genes (Figure 9). Interestingly, we found that the H99 genes pre-
sent within the MGCs that were lost in R265 were also poorly
expressed. However, none of these genes were upregulated upon
EZH2 deletion (Dumesic et al. 2015), suggesting that they are not
directly regulated by H3K7me3. In summary, these data suggest
that dynamic exchanges of MGCs between subtelomeric regions

Figure 7 (A) GO term enrichment analysis of genes in clusters absent in R265. Green colors indicate GO terms associated with transcription regulation
(GO:0006012, GO:0000981, GO:0006366, GO:0006357). Blue colors indicate GO terms associated with transport (GO:0055085). Orange colors indicate GO
terms associated with galactose metabolism (GO:0006012). (B) Example of the organization of an MGC-like cluster absent in R265. CNAG_04468
(CNI00890) encodes a putative tartrate dehydrogenase, CNAG_04469 (CNI99880) encodes a putative 4-aminobutyrate transaminase, CNAG_04470
(CNI00870) encodes a putative halo-acid dehalogenase, CNAG_04471 (CNI00860) encodes an FAD-dependent oxidoreductase superfamily protein,
CNAG_04472 (CNI00850) encodes an MFS protein, and CNAG_04473 (CNI00840) encodes a TF with a fungal Zn(2)-Cys(6) binuclear cluster domain. (C) GO
term enrichment analysis of subtelomeric genes in H99. Green colors indicate GO terms associated with transcription regulation (GO:0051213,
GO:0000981, GO:0006366, GO:0006357, GO:0006351, GO:0006355). Blue colors indicate GO terms associated with transport (GO:0055085, GO:0022891,
GO:0022857, GO:0005215, GO:0016021, GO:0008643, GO:0006810). The orange color indicates a GO term associated with dioxygenase activity
(GO:0051213).
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Figure 8 Subtelomeric gene organization in Cryptococcus. The 20 most distal genes at each subtelomeric locus were considered. The color code identifies
each subtelomeric regions in H99 and orthologous genes in the other species. The positions of these orthologs in the H99 subtelomeric regions are given
(TEL-RX or TEL-LX correspond to genes positioned within the right or left arm of chromosome X). When the orthologous gene is not located within a
subtelomeric region, its locus named is given. Black boxes correspond to genes present in C. deneoformans or C. deuterogattii but absent in C. neoformans.
Red and green boxes indicate duplicated sets of genes. Blue dots indicate transporters. Green dots indicate transcription factors.
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occurred during Cryptococcus speciation. These results also sug-
gest that MGC exchanges between subtelomeric loci and more
central parts of chromosomes might be associated with new as-
similation capacities.

Discussion
Although a number of bioinformatic pipelines have been pub-
lished in recent years, accurate annotation of fungal genomes is
still difficult due to their complexity and compactness (Haas et al.
2011). In this study, we have carefully optimized a previously
published Cufflinks-CodingQuarry-based annotation pipeline
and tested it on two complex fungal genomes. This pipeline
largely outcompeted the BRAKER1 pipeline when applied to two
Cryptococcus reference genomes (C. neoformans H99 and C. deneofor-
mans JEC21) and would likely outcompete many other pipelines
use to annotate fungal genomes de novo (Min et al. 2017).

Our optimization process revealed three notable points. First
and counterintuitively, increasing the quantity of data did not al-
ways result in a better annotation. This is likely because
Cufflinks tends to make huge clusters when large data sets are
input; these clusters might be eliminated during the transcript
identification step. Accordingly, we found that the number of
predicted transcripts decreased when too much data was used.
Second, we found a nearly linear relationship between the num-
ber of introns predicted and the quality of the annotation.
However, this correlation did not hold when two of the pipelines
were compared; the BRAKER pipeline predicted more introns
than the C3Q pipeline, along with predicting many more genes.
Nevertheless, the correlation between intron number and anno-
tation quality provided a facile way to evaluate the reliability of a
de novo annotation, which might be affected, for instance, by the
quality of the RNA-seq data. Third, we found the final step of
comparative genomics did not always improve the quality of the
annotation. In our assay, the Exonerate-based analysis step using
the whole proteome of a reference species primarily introduced
errors into the annotation. This was probably due to the fact that
even when manually curating genome annotations, a number of
dubious genes remain, which are then transferred to the new ge-
nome annotation. In fact, a systematic usage of a comparative
annotation step following a de novo RNA-seq annotation would
likely result in a dramatic expansion of dubiously annotated

genes in fungal genomes. Accordingly, it is noticeable that the
number of predicted coding genes in R265 (n¼ 6405) is lower than
the ones predicted in H99 (n¼ 6795) and JEC21 (n¼ 6639) although
we ignore whether these differences have some biological rele-
vance or if they are due to the different strategies used to anno-
tate these genomes.

During the annotation of the R265 genome, we manually cu-
rated a subset of genes that were lost in R265 compared to all of
the other Cryptococcus species as well as a set of putative pseudo-
genes. The identification of genes specifically lost or pseudogen-
ized in R265 has previously been used as a strategy to identify
novel RNAi components in C. neoformans (Feretzaki et al. 2016).
Accordingly, most known RNAi genes are present in these sets of
lost and pseudogenized genes (Billmyre et al. 2013). However,
some genes, like RDE1 (Burke et al. 2019), which is necessary for
siRNA production, are present and functional in R265, suggesting
that it may have roles independent from RNAi silencing. On the
other hand, GWO1, which is also considered to be an RNAi path-
way component, is also absent in the C. tetragattii strain IND107
and is therefore absent in our list as well. One possible explana-
tion is that Gwo1 alone or in complex with Ago1 could play an-
other role independent of RNAi. Another possibility is that a
Gwo1-dependent RNAi pathway has also been lost in C. tetragattii.
Nevertheless, this analysis confirms that looking for specific gene
loss in a fungal species deficient for a certain pathway remains a
promising strategy for the identification of genes implicated in
this pathway in other proficient species. In the present case, it
would be interesting to see how many of the R265 truncated
genes are functional in other C. gattii species, although it would
demand a complex manual curation, which is beyond the scope
of this paper.

Our study revealed that loss of RNAi in R265 is associated with
few general transcriptome modifications compared to the tran-
scriptomes of JEC21 and H99, aside from the predictable absence
of siRNA. This might be because we did not annotate most non-
coding features like lncRNAs, transcript leaders, and 3’UTRs. Yet,
quantification of the sense/antisense transcription ratio at CDS
did not reveal any differences between R265 and the other
Cryptococcus species analyzed, suggesting that this ratio does not
depend on the RNAi status of the species in this genus. This is in
agreement with the fact that siRNAs in C. neoformans primarily
target transposons and retrotransposons (Janbon et al. 2010;
Wang et al. 2010; Dumesic et al. 2013), whereas antisense tran-
scription is associated with nearly all of the genes as we have
shown. This result also suggests antisense transcription in
Cryptococcus only rarely results in the production of double-
stranded RNA. Dumesic and colleagues showed that delayed
splicing is a source of siRNA production in C. neoformans
(Dumesic et al. 2013). We thus anticipated that the absence of
RNAi would increase the level of intron retention. In agreement
with previous reports in C. deneoformans, we found that IR level
was regulated by growth conditions in both C. neoformans and C.
deuterogattii (Gonzalez-Hilarion et al. 2016). However, the number
of introns regulated by IR was markedly larger in R265 suggesting
that IR is better tolerated in this RNAi-deficient species. We also
expected that some compensatory mechanisms might be acting
to control the level of IR because IR rates were largely similar
across the three species analyzed even though it was higher in
R265, at least at 37�C. It is important to note the remarkable ef-
fect of temperature on both IR and antisense transcription, which
might be related to a recent report that transposons are specifi-
cally mobilized at this temperature in C. deneoformans (Gusa et al.
2020).

Figure 9 Expression of genes according to their position on the
chromosome. Subtelomeric genes are the 20 most distal genes of each
chromosome arm. The H99 genes present within the non-subtelomeric
cluster of genes lost in R265 are indicated as MGCs.
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Although most loci that have been lost in R265 compared to
other Cryptococcus species contain only a single gene, we also
identified gene clusters that were missing in R265. Analysis of the
gene content within these clusters revealed a strong enrichment
of genes coding for proteins implicated in transport and tran-
scriptional regulation. This finding was reminiscent of patterns
identified in metabolic gene clusters (MGCs) involved in primary
metabolism, which typically contain transcription factors and
transporters (Rokas et al. 2018). MGCs can be lost or gained in
fungi and several examples of instances of horizontal transfer of
whole MGCs from one species to another have been published
(Slot and Rokas 2010; Rokas et al. 2018; Wang et al. 2019). In fila-
mentous fungi, the majority of MGCs are located within subtelo-
meric regions, which are largely subjected to inter-chromosomal
reshuffling (Gladieux et al. 2014). Two examples of lineage-
specific gene clusters harboring both transcription factors and
transporters have been previously reported in C. neoformans
(Rhodes et al. 2017), suggesting dynamic gene cluster gain and
loss events even with a single species in Cryptococcus.
Interestingly, these C. neoformans lineage-specific clusters also
contain transcription factors and transporters (Rhodes et al.
2017). A more recent report suggests that genes within one of
these C. neoformans clusters are co-regulated, as is expected from
a typical MGC (Yu et al. 2020). In Cryptococcus, we found that the
subtelomeric regions were also enriched for characteristic MGC
genes as well, and comparisons of subtelomeric gene organiza-
tion across the three Cryptococcus species suggested active reshuf-
fling. This was in agreement with previous data showing that
subtelomeric genes are under strong evolutionary pressure in
Cryptococcus (Desjardins et al. 2017). We found a large number of
genes encoding transporters and TFs of unknown function in
Cryptococcus subtelomeric regions. Surprisingly, most of the TF
genes identified in these MGCs within subtelomeric regions as
well as in MGCs far from telomeres were not annotated as TFs
and were not included when a systematic TF deletion collection
was constructed and studied (Jung et al. 2015). It therefore seems
that the TF repertoire in Cryptococcus may be larger than currently
appreciated. Similarly, besides myo-inositol transporters, which
have been previously reported to be localized within subtelomeric
regions (Xue et al. 2010), the substrates of most transporters lo-
cated in these regions remain unknown.

Genes within subtelomeric regions are silenced by H3K27me3
epigenetic marks and, accordingly, are expressed at lower levels
than genes located in more central regions of the chromosomes.
Similarly, genes within the subtelomeric clusters lost in R265
were poorly expressed. Yet, their expression levels did not signifi-
cantly change following deletion of the gene encoding the
H3K27me3 methyltransferase EZH2, suggesting they are either
not regulated by H3K27me3 or that additional changes are
needed to activate expression of these genes like those previously
described in Fusarium graminearum (Connolly et al. 2013). If this is
the case, the regulation of GAL genes by galactose might repre-
sent a good example of how genes within the MGCs could be reg-
ulated in Cryptococcus (Wickes and Edman 1995; Moyrand et al.
2008; Ruff et al. 2009). Besides the GAL cluster, the function and
regulation of most of MGC genes in Cryptococcus are unknown.
Nevertheless, our results suggest active exchange between subte-
lomeric regions and more central parts of chromosomes in
Cryptococcus, potentially reshaping primary metabolism for adap-
tation to different environmental niches. They also emphasize
how both complete genome and precise annotations are needed
to study these dynamics in fungi.
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P. A. Gröhs Ferrareze et al. | 17

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/11/2/jkaa070/6080769 by U

niversidade Federal do R
io G

rande do Sul (U
FR

G
S) user on 23 N

ovem
ber 2023



Moyrand F, Lafontaine I, Fontaine T, Janbon G. 2008. UGE1 and UGE2

regulate the UDP-glucose/UDP-galactose equilibrium in

Cryptococcus neoformans. Eukaryot Cell. 7:2069–2077.

Mudge JM, Harrow J. 2016. The state of play in higher eukaryote gene

annotation. Nat Rev Genet. 17:758–772.

Ngamskulrungroj P, Chang Y, Sionov E, Kwon-Chung KJ. 2012. The

primary target organ of Cryptococcus gattii is different from that of

Cryptococcus neoformans in a murine model. mBio. 3:

e00103–00112.

Pertea G, Pertea M. 2020. GFF Utilities: GffRead and GffCompare.

F1000Res. 9:304.

Priebe S, Kreisel C, Horn F, Guthke R, Linde J. 2015. FungiFun2: a com-

prehensive online resource for systematic analysis of gene lists

from fungal species. Bioinformatics. 31:445–446.

Rhodes J, Desjardins CA, Sykes SM, Beale MA, Vanhove M, et al. 2017.

Tracing genetic exchange and biogeography of Cryptococcus neo-

formans var. grubii at the global population level. Genetics. 207:

327–346. doi:10.1534/genetics.1117.203836.

Rokas A, Wisecaver JH, Lind AL. 2018. The birth, evolution and death

of metabolic gene clusters in fungi. Nat Rev Microbiol. 16:

731–744.

Ruff JA, Lodge JK, Baker LG. 2009. Three galactose inducible pro-

moters for use in C. neoformans var. grubii. Fungal Genet Biol. 46:

9–16.

Semighini CP, Averette AF, Perfect JR, Heitman J. 2011. Deletion of

Cryptococcus neoformans AIF ortholog promotes chromosome an-

euploidy and fluconazole-resistance in a metacaspase-

independent manner. PLoS Pathog. 7:e1002364.

Shen X-X, Opulente DA, Kominek J, Zhou X, Steenwyk JL, et al. 2018.

Tempo and mode of genome evolution in the budding yeast sub-

phylum. Cell. 175:1533–1545.e1520.

Slater GS, Birney E. 2005. Automated generation of heuristics for bio-

logical sequence comparison. BMC Bioinformatics. 6:31.

Slot JC, Rokas A. 2010. Multiple GAL pathway gene clusters evolved

independently and by different mechanisms in fungi. Proc Natl

Acad Sci USA. 107:10136–10141.

Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native

and syntenically mapped cDNA alignments to improve de novo

gene finding. Bioinformatics. 24:637–644.

Testa AC, Hane JK, Ellwood SR, Oliver RP. 2015. CodingQuarry: highly

accurate hidden Markov model gene prediction in fungal

genomes using RNA-seq transcripts. BMC Genomics. 16:170.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. 2010.

Transcript assembly and quantification by RNA-Seq reveals

unannotated transcripts and isoform switching during cell differ-

entiation. Nat Biotechnol. 28:511–515.

Tutar Y. 2012. Pseudogenes. Compar Funct Genom. 2012:1–424526.

Wallace EWJ, Maufrais C, Sales-Lee J, Tuck LR, de Oliveira L, et al.

2020. Quantitative global studies reveal differential translational

control by start codon context across the fungal kingdom.

Nucleic Acids Res. 48:2312–2331.

Wang M, Fu H, Ruan R. 2019. A small horizontally transferred gene

cluster contributes to the sporulation of Alternaria alternata.

Genome Biol Evol. 11:3436–3444.

Wang X, Hsueh YP, Li W, Floyd A, Skalsky R, et al. 2010. Sex-induced

silencing defends the genome of Cryptococcus neoformans via

RNAi. Genes Dev. 24:2566–2582.

Wickes BL, Edman JC. 1995. The Cryptococcus neoformans GAL7 gene

and its use as an inducible promoter. Mol Microbiol. 16:1099–1109.

Xue C, Liu T, Chen L, Li W, Liu I, et al. 2010. Role of an expanded inosi-

tol transporter repertoire in Cryptococcus neoformans sexual re-

production and virulence. mBio. 1:e00084–00010.

Yadav V, Sun S, Billmyre RB, Thimmappa BC, Shea T, et al. 2018.

RNAi is a critical determinant of centromere evolution in closely

related fungi. Proc Natl Acad Sci USA. 115:3108–3113.

Yu C-H, Chen Y, Desjardins CA, Tenor JL, Toffaletti DL, et al. 2020.

Landscape of gene expression variation of natural isolates of

Cryptococcus neoformans in response to biologically relevant

stresses. Microb Genom. 6:e000319.

Zhu P, Zhai B, Lin X, Idnurm A. 2013. Congenic strains for genetic

analysis of virulence traits in Cryptococcus gattii. Infect Immun.

81:2616–2625.

Communicating editor: A. Rokas

18 | G3, 2021, Vol. 11, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/11/2/jkaa070/6080769 by U

niversidade Federal do R
io G

rande do Sul (U
FR

G
S) user on 23 N

ovem
ber 2023


	tblfn1

