45 research outputs found

    Increased bacterial growth efficiency with environmental variability: results from DOC degradation by bacteria in pure culture experiments.

    Get PDF
    This paper assesses how considering variation in DOC availability and cell maintenance in bacterial models affects Bacterial Growth Efficiency (BGE) estimations. For this purpose, we conducted two biodegradation experiments simultaneously. In experiment one, a given amount of substrate was added to the culture at the start of the experiment whilst in experiment two, the same amount of substrate was added, but using periodic pulses over the time course of the experiment. Three bacterial models, with different levels of complexity, (the Monod, Marr-Pirt and the dynamic energy budget – DEB – models), were used and calibrated using the above experiments. BGE has been estimated using the experimental values obtained from discrete samples and from model generated data. Cell maintenance was derived experimentally, from respiration rate measurements. The results showed that the Monod model did not reproduce the experimental data accurately, whereas the Marr-Pirt and DEB models demonstrated a good level of reproducibility, probably because cell maintenance was built into their formula. Whatever estimation method was used, the BGE value was always higher in experiment two (the periodically pulsed substrate) as compared to the initially one-pulsed-substrate experiment. Moreover, BGE values estimated without considering cell maintenance (Monod model and empirical formula) were always smaller than BGE values obtained from models taking cell maintenance into account. Since BGE is commonly estimated using constant experimental systems and ignore maintenance, we conclude that these typical methods underestimate BGE values. On a larger scale, and for biogeochemical cycles, this would lead to the conclusion that, for a given DOC supply rate and a given DOC consumption rate, these BGE estimation methods overestimate the role of bacterioplankton as CO<sub>2</sub> producers

    α,ÎČ-D-Constrained Nucleic Acids Are Strong Terminators of Thermostable DNA Polymerases in Polymerase Chain Reaction

    Get PDF
    (SC5â€Č, RP) α,ÎČ-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5â€ČC and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases

    A two year survey of ultraphytoplankton in the bay of Marseilles

    No full text
    The Bay of Marseilles is under the influence of a large urban concentration and its maritime activities. All of them discharge compounds (hydrocarbons, excess nutrients, heavy metals, chemicals, etc.) that can alter the marine ecosystem. To investigate whether ultraphytoplankton (<10 microm) could be used as biosensors for their own ecosystem, a 2-year survey was conducted in the Bay of Marseilles. Seven stations monitored water mass and potential anthropic effects in the bay. Seawater samples were collected monthly or bimonthly at three depths, prefiltered, fixed, and kept in liquid nitrogen until flow cytometric analysis. Five categories were created: Prochlorococcus, picoeukaryotes (<2 microm), nanoeukaryotes I (2--6 microm), nanoeukaryotes II (6--10 microm), and Synechococcus (<1.5 microm). Artificial neural network analysis (Kohonen self-organizing maps) produced the same number of clusters as cluster analysis with Winlist software (Verity Software House). In addition to the wide variabilities in abundance and biomass, there were a strong seasonal signal and sporadic events. Lessons are derived from this study for future monitoring of marine microorganisms

    Critique de la révolution ordinaire

    No full text
    corecore