10 research outputs found

    JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    No full text
    International audienceJASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release

    JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    Get PDF
    International audienceJASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release

    Impact of wet-lab protocols on quality of whole-genome short-read sequences from foodborne microbial pathogens

    Get PDF
    For successful elucidation of a food-borne infection chain, the availability of high-quality sequencing data from suspected microbial contaminants is a prerequisite. Commonly, those investigations are a joint effort undertaken by different laboratories and institutes. To analyze the extent of variability introduced by differing wet-lab procedures on the quality of the sequence data we conducted an interlaboratory study, involving four bacterial pathogens, which account for the majority of food-related bacterial infections: Campylobacter spp., Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and Salmonella enterica. The participants, ranging from German federal research institutes, federal state laboratories to universities and companies, were asked to follow their routine in-house protocols for short-read sequencing of 10 cultures and one isolated bacterial DNA per species. Sequence and assembly quality were then analyzed centrally. Variations within isolate samples were detected with SNP and cgMLST calling. Overall, we found that the quality of Illumina raw sequence data was high with little overall variability, with one exception, attributed to a specific library preparation kit. The variability of Ion Torrent data was higher, independent of the investigated species. For cgMLST and SNP analysis results, we found that technological sequencing artefacts could be reduced by the use of filters, and that SNP analysis was more suited than cgMLST to compare data of different contributors. Regarding the four species, a minority of Campylobacter isolate data showed the in comparison highest divergence with regard to sequence type and cgMLST analysis. We additionally compared the assembler SPAdes and SKESA for their performance on the Illumina data sets of the different species and library preparation methods and found overall similar assembly quality metrics and cgMLST statistics

    Benchmarking and Validation of a Bioinformatics Workflow for Meat Species Identification Using 16S rDNA Metabarcoding

    No full text
    DNA-metabarcoding is becoming more widely used for routine authentication of meat-based food and feed products. Several methods validating species identification methods through amplicon sequencing have already been published. These use a variety of barcodes and analysis workflows, however, no methodical comparison of available algorithms and parameter optimization are published hitherto for meat-based products’ authenticity. Additionally, many published methods use very small subsets of the available reference sequences, thereby limiting the potential of the analysis and leading to over-optimistic performance estimates. We here predict and compare the ability of published barcodes to distinguish taxa in the BLAST NT database. We then use a dataset of 79 reference samples, spanning 32 taxa, to benchmark and optimize a metabarcoding analysis workflow for 16S rDNA Illumina sequencing. Furthermore, we provide recommendations as to the parameter choices, sequencing depth, and thresholds that should be used to analyze meat metabarcoding sequencing experiments. The analysis workflow is publicly available, and includes ready-to-use tools for validation and benchmarking

    A flower is born: an update on Arabidopsis floral meristem formation

    No full text
    International audienceIn Arabidopsis, floral meristems appear on the flanks of the inflorescence meristem. Their stereotypic development, ultimately producing the four whorls of floral organs, is essentially controlled by a network coordinating growth and cell-fate determination. This network integrates hormonal signals, transcriptional regulators, and mechanical constraints. Mechanisms regulating floral meristem formation have been studied at many different scales, from protein structure to tissue modeling. In this paper, we review recent findings related to the emergence of the floral meristem and floral fate determination and examine how this field has been impacted by recent technological developments

    Plant SAM-Domain Proteins Start to Reveal Their Roles.

    No full text
    International audienceProteins often act in complexes assembled via protein-protein interaction domains. The sterile alpha motif (SAM) domain is one of the most prominent interaction domains in animals and is present in proteins of diverse functions. This domain allows head-to-tail closed oligomerisation or polymer formation resulting in homo- and/or heterocomplexes that have been shown to be important for proper protein localisation and function. In plants this domain is also present but has been poorly studied except for recent studies on the LEAFY floral regulator and the tRNA import component (TRIC)1/2 proteins. Here we catalogue SAM domain-containing proteins from arabidopsis (Arabidopsis thaliana), compare plant and other eukaryotic SAM domains, and perform homology modelling to probe plant SAM domain interaction capabilities

    TPLATE complex dependent endocytosis is required for shoot apical meristem maintenance by attenuating CLAVATA1 signaling

    No full text
    Abstract Endocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to sense and rapidly respond to both endogenous and environmental stimuli. The evolutionarily ancient TPLATE complex (TPC) plays an essential role in clathrin-mediated endocytosis (CME) in Arabidopsis plants. Knockout or strong knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development. Partially functional alleles of TPC subunits however only cause very mild developmental deviations. Here, we took advantage of the recently reported partially functional TPLATE allele, WDXM2, to investigate a role for TPC-dependent endocytosis in receptor-mediated signalling. We discovered that reduced TPC-dependent endocytosis confers a hypersensitivity to very low doses of CLAVATA3 (CLV3) peptide signalling. This hypersensitivity correlated with the abundance of the CLV3 receptor protein kinase CLAVATA1 (CLV1) at the plasma membrane. Genetic analysis and live-cell imaging revealed that TPC-dependent regulation of CLV3-dependent internalization of CLV1 from the plasma membrane is required for CLV3 function in the shoot. Our findings provide evidence that clathrin-mediated endocytosis of CLV1 is a mechanism to dampen CLV3-mediated signaling during plant development

    TPLATE complex‐dependent endocytosis attenuates CLAVATA1 signaling for shoot apical meristem maintenance

    No full text
    International audienceEndocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to rapidly respond to stimuli. The evolutionary ancient TPLATE complex (TPC) plays an essential role in endocytosis in Arabidopsis plants. Knockout or knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development. Partially functional alleles of TPC subunits however only cause mild developmental deviations. Here, we took advantage of the partially functional TPLATE allele, WDXM2, to investigate a role for TPC‐dependent endocytosis in receptor‐mediated signaling. We discovered that reduced TPC‐dependent endocytosis confers a hypersensitivity to very low doses of CLAVATA3 peptide signaling. This hypersensitivity correlated with the abundance of the CLAVATA3 receptor protein kinase CLAVATA1 at the plasma membrane. Genetic and biochemical analysis as well as live‐cell imaging revealed that TPC‐dependent regulation of CLAVATA3‐dependent internalization of CLAVATA1 from the plasma membrane is required for shoot stem cell homeostasis. Our findings provide evidence that TPC‐mediated endocytosis and degradation of CLAVATA1 is a mechanism to dampen CLAVATA3‐mediated signaling during plant development
    corecore