1,917 research outputs found
Boltzmann and hydrodynamic description for self-propelled particles
We study analytically the emergence of spontaneous collective motion within
large bidimensional groups of self-propelled particles with noisy local
interactions, a schematic model for assemblies of biological organisms. As a
central result, we derive from the individual dynamics the hydrodynamic
equations for the density and velocity fields, thus giving a microscopic
foundation to the phenomenological equations used in previous approaches. A
homogeneous spontaneous motion emerges below a transition line in the
noise-density plane. Yet, this state is shown to be unstable against spatial
perturbations, suggesting that more complicated structures should eventually
appear.Comment: 4 pages, 3 figures, final versio
Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids
In the past twenty years, shear-banding flows have been probed by various
techniques, such as rheometry, velocimetry and flow birefringence. In micellar
solutions, many of the data collected exhibit unexplained spatio-temporal
fluctuations. Recently, it has been suggested that those fluctuations originate
from a purely elastic instability of the flow. In cylindrical Couette geometry,
the instability is reminiscent of the Taylor-like instability observed in
viscoelastic polymer solutions. In this letter, we describe how the criterion
for purely elastic Taylor-Couette instability should be adapted to
shear-banding flows. We derive three categories of shear-banding flows with
curved streamlines, depending on their stability.Comment: 6 pages, 3 figure
Potential "ways of thinking" about the shear-banding phenomenon
Shear-banding is a curious but ubiquitous phenomenon occurring in soft
matter. The phenomenological similarities between the shear-banding transition
and phase transitions has pushed some researchers to adopt a 'thermodynamical'
approach, in opposition to the more classical 'mechanical' approach to fluid
flows. In this heuristic review, we describe why the apparent dichotomy between
those approaches has slowly faded away over the years. To support our
discussion, we give an overview of different interpretations of a single
equation, the diffusive Johnson-Segalman (dJS) equation, in the context of
shear-banding. We restrict ourselves to dJS, but we show that the equation can
be written in various equivalent forms usually associated with opposite
approaches. We first review briefly the origin of the dJS model and its initial
rheological interpretation in the context of shear-banding. Then we describe
the analogy between dJS and reaction-diffusion equations. In the case of
anisotropic diffusion, we show how the dJS governing equations for steady shear
flow are analogous to the equations of the dynamics of a particle in a quartic
potential. Going beyond the existing literature, we then draw on the Lagrangian
formalism to describe how the boundary conditions can have a key impact on the
banding state. Finally, we reinterpret the dJS equation again and we show that
a rigorous effective free energy can be constructed, in the spirit of early
thermodynamic interpretations or in terms of more recent approaches exploiting
the language of irreversible thermodynamics.Comment: 14 pages, 6 figures, tutorial revie
Cross-Lingual Classification of Crisis Data
Many citizens nowadays flock to social media during crises to share or acquire the latest information about the event. Due to the sheer volume of data typically circulated during such events, it is necessary to be able to efficiently filter out irrelevant posts, thus focusing attention on the posts that are truly relevant to the crisis. Current methods for classifying the relevance of posts to a crisis or set of crises typically struggle to deal with posts in different languages, and it is not viable during rapidly evolving crisis situations to train new models for each language. In this paper we test statistical and semantic classification approaches on cross-lingual datasets from 30 crisis events, consisting of posts written mainly in English, Spanish, and Italian. We experiment with scenarios where the model is trained on one language and tested on another, and where the data is translated to a single language. We show that the addition of semantic features extracted from external knowledge bases improve accuracy over a purely statistical model
Fast and User-friendly Quantum Key Distribution
Some guidelines for the comparison of different quantum key distribution
experiments are proposed. An improved 'plug & play' interferometric system
allowing fast key exchange is then introduced. Self-alignment and compensation
of birefringence remain. Original electronics implementing the BB84 protocol
and allowing user-friendly operation is presented. Key creation with 0.1 photon
per pulse at a rate of 486 Hz with a 5.4% QBER - corresponding to a net rate of
210Hz - over a 23 Km installed cable was performed.Comment: 21 pages, 6 figures, added referenc
Towards Interpretable Deep Learning Models for Knowledge Tracing
As an important technique for modeling the knowledge states of learners, the
traditional knowledge tracing (KT) models have been widely used to support
intelligent tutoring systems and MOOC platforms. Driven by the fast
advancements of deep learning techniques, deep neural network has been recently
adopted to design new KT models for achieving better prediction performance.
However, the lack of interpretability of these models has painfully impeded
their practical applications, as their outputs and working mechanisms suffer
from the intransparent decision process and complex inner structures. We thus
propose to adopt the post-hoc method to tackle the interpretability issue for
deep learning based knowledge tracing (DLKT) models. Specifically, we focus on
applying the layer-wise relevance propagation (LRP) method to interpret
RNN-based DLKT model by backpropagating the relevance from the model's output
layer to its input layer. The experiment results show the feasibility using the
LRP method for interpreting the DLKT model's predictions, and partially
validate the computed relevance scores from both question level and concept
level. We believe it can be a solid step towards fully interpreting the DLKT
models and promote their practical applications in the education domain
Elastic turbulence in shear banding wormlike micelles
We study the dynamics of the Taylor-Couette flow of shear banding wormlike
micelles. We focus on the high shear rate branch of the flow curve and show
that for sufficiently high Weissenberg numbers, this branch becomes unstable.
This instability is strongly sub-critical and is associated with a shear stress
jump. We find that this increase of the flow resistance is related to the
nucleation of turbulence. The flow pattern shows similarities with the elastic
turbulence, so far only observed for polymer solutions. The unstable character
of this branch led us to propose a scenario that could account for the recent
observations of Taylor-like vortices during the shear banding flow of wormlike
micelles
Soliton binding and low-lying singlets in frustrated odd-legged S=1/2 spin tubes
Motivated by the intriguing properties of the vanadium spin tube Na2V3O7, we
show that an effective spin-chirality model similar to that of standard
Heisenberg odd-legged S=1/2 spin tubes can be derived for frustrated inter-ring
couplings, but with a spin-chirality coupling constant alpha that can be
arbitrarily small. Using density matrix renormalization group and analytical
arguments, we show that, while spontaneous dimerization is always present,
solitons become bound into low-lying singlets as alpha is reduced. Experimental
implications for strongly frustrated tubes are discussed.Comment: 4 pages, 4 figure
Making the Sneutrino a Higgs with a Lepton Number
We present a supersymmetric extension of the Standard Model that posseses a
continuous symmetry, which is identified with one of three lepton
numbers, and where a sneutrino vev gives mass to the down type quark and
leptons. This idea allows for a smaller particle content than the minimal
-symmetric supersymmetry extension of the standard model (MRSSM). We explore
bounds on this model coming from electroweak precision measurements, neutrino
masses and gravitino decay. Bounds from electroweak precision measurements lead
to a two-sided bound on while gravitino decay forces a low
reheating temperature. Finally, the generation of neutrino masses from
-symmetry violation put an upper bound on the SUSY breaking scale. Despite
all of this, we find that the allowed parameter space is still large and would
lead to a distinctive phenomenology at the LHC.Comment: 20 pages, 6 figures, 3 tables. References added, typos correcte
- …