5 research outputs found

    The evolving value assessment of cancer therapies: Results from a modified Delphi study

    Get PDF
    The move toward early detection and treatment of cancer presents challenges for value assessment using traditional endpoints. Current cancer management rarely considers the full economic and societal benefits of therapies. Our study used a modified Delphi process to develop principles for defining and assessing value of cancer therapies that aligns with the current trajectory of oncology research and reflects broader notions of value. 24 experts participated in consensus-building activities across 5 months (16 took part in structured interactions, including a survey, plenary sessions, interviews, and off-line discussions, while 8 participated in interviews). Discussion focused on: 1) which oncology-relevant endpoints should be used for assessing treatments for early-stage cancer and access decisions for early-stage treatments, and 2) the importance of additional value components and how these can be integrated in value assessments. The expert group reached consensus on 4 principles in relation to the first area (consider oncology-relevant endpoints other than overall survival; build evidence for endpoints that provide earlier indication of efficacy; develop evidence for the next generation of predictive measures; use managed entry agreements supported by ongoing evidence collection to address decision-maker evidence needs) and 3 principles in relation to the second (routinely use patient reported outcomes in value assessments; assess broad economic impact of new medicines; consider other value aspects of relevance to patients and society)

    Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength?

    No full text
    Recent technical improvements have made it possible to determine trabecular bone structure parameters of the spine using clinical multi-detector computed tomography (MDCT). Therefore, the purpose of this study was to analyze trabecular bone structure parameters obtained from clinical MDCT in relation to high resolution peripheral quantitative computed tomography (HR-pQCT) as a standard of reference and to investigate whether clinical MDCT can predict vertebral bone strength. Fourteen functional spinal segment units between T7 and L3 were harvested from 14 formalin-fixed human cadavers (11 women and 3 men; age 84 ± 10 years). All functional spinal segment units were examined using HR-pQCT (isotropic voxel size of 41 μm(3)) and a clinical whole-body MDCT (interpolated voxel size of 146 × 146 × 300 μm(3)). Trabecular bone structure analyses (histomorphometric and texture measures) were performed in the HR-pQCT as well as MDCT images. Vertebral failure load (FL) of the functional spinal segment units was determined in an uniaxial biomechanical test. The HR-pQCT and MDCT derived trabecular bone structure parameters showed correlations ranging from r = 0.60 to r = 0.90 (p 0.05). In this cadaver model, the spatial resolution of clinically available whole-body MDCT scanners was suitable for trabecular bone structure analysis of the spine and to predict vertebral bone strength
    corecore