11 research outputs found

    Targeting oxidative stress: Novel coumarin-based inverse agonists of GPR55

    Get PDF
    Oxidative stress is associated with different neurological and psychiatric diseases. Therefore, development of new pharmaceuticals targeting oxidative dysregulation might be a promising approach to treat these diseases. The G-protein coupled receptor 55 (GPR55) is broadly expressed in central nervous tissues and cells and is involved in the regulation of inflammatory and oxidative cell homeostasis. We have recently shown that coumarin-based compounds enfold inverse agonistic activities at GPR55 resulting in the inhibition of prostaglandin E2. However, the antioxidative effects mediated by GPR55 were not evaluated yet. Therefore, we investigated the antioxidative effects of two novel synthesized coumarin-based compounds, KIT C and KIT H, in primary mouse microglial and human neuronal SK-N-SK cells. KIT C and KIT H show antioxidative properties in SK-N-SH cells as well as in primary microglia. In GPR55-knockout SK-N-SH cells, the antioxidative effects are abolished, suggesting a GPR55-dependent antioxidative mechanism. Since inverse agonistic GPR55 activation in the brain seems to be associated with decreased oxidative stress, KIT C and KIT H possibly act as inverse agonists of GPR55 eliciting promising therapeutic options for oxidative stress related diseases

    Pharmacological inhibition of TRPV2 attenuates phagocytosis and lipopolysaccharide‐induced migration of primary macrophages

    Get PDF
    Background and Purpose: In macrophages, transient receptor potential vanilloid 2 (TRPV2) channel contributes to various cellular processes such as cytokine production, differentiation, phagocytosis and migration. Due to a lack of selective pharmacological tools, its function in immunological processes is not well understood and the identification of novel and selective TRPV2 modulators is highly desirable. Experimental Approach: Novel and selective TRPV2 modulators were identified by screening a compound library using Ca2+ influx assays with human embryonic kidney 293 (HEK293) cells heterologously expressing rat TRPV2. Hits were further characterized and validated with Ca2+ influx and electrophysiological assays. Phagocytosis and migration of macrophages were analysed and the contribution of TRPV2 to the generation of Ca2+ microdomains was studied by total internal reflection fluorescence microscopy (TIRFM). Key Results: The compound IV2-1, a dithiolane derivative (1,3-dithiolan-2-ylidene)-4-methyl-5-phenylpentan-2-one), is a potent inhibitor of heterologously expressed TRPV2 channels (IC50 = 6.3 ± 0.7 ΌM) but does not modify TRPV1, TRPV3 or TRPV4 channels. IV2-1 also inhibits TRPV2-mediated Ca2+ influx in macrophages. IV2-1 inhibits macrophage phagocytosis along with valdecoxib and after siRNA-mediated knockdown. Moreover, TRPV2 inhibition inhibits lipopolysaccharide-induced migration of macrophages whereas TRPV2 activation promotes migration. After activation, TRPV2 shapes Ca2+ microdomains predominantly at the margin of macrophages, which are important cellular regions to promote phagocytosis and migration. Conclusions and Implications: IV2-1 is a novel TRPV2-selective blocker and underline the role of TRPV2 in macrophage-mediated phagocytosis and migration. Furthermore, we provide evidence that TRPV2 activation generates Ca2+ microdomains, which may be involved in phagocytosis and migration of macrophages

    Addition of dithi(ol)anylium tetrafluoroborates to α, ÎČ-unsaturated ketones

    Get PDF
    In the presented study, dithi(ol)anylium tetrafluoroborates are added to α,ÎČ-unsaturated ketones in a Michael-type reaction yielding diverse substituted ketene diothi(ol)anes. The reactions proceed at room temperature in 1 or 13 h without the need of further additives. The presented procedure is in particular useful for dithi(ol)anylium tetrafluoroborates without electron-withdrawing groups in α-position. This is advantageous with respect to previous approaches, which were limited to the use of ketene dithioacetals substituted with electron-withdrawing groups. Aiming for the systematic investigation of possible steric and electronic influences on the outcome of the reaction, various combinations of electrophiles and nucleophiles were used and the results of the reactions were compared based on the type of the used dithioacetal. The scope of the presented procedure is shown with four additional transformations including the use of additional electrophiles and nucleophiles, the use of a chiral auxiliary and subsequent reduction of selected products. Additionally, we extended the reaction to the synthesis of diene dithiolanes by addition of an ynone to α-alkyl or aryl-substitued dithiolanylium TFBs

    Functional Selectivity of Coumarin Derivates Acting via GPR55 in Neuroinflammation

    Get PDF
    Anti-neuroinflammatory treatment has gained importance in the search for pharmacological treatments of different neurological and psychiatric diseases, such as depression, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Clinical studies demonstrate a reduction of the mentioned diseases’ symptoms after the administration of anti-inflammatory drugs. Novel coumarin derivates have been shown to elicit anti-neuroinflammatory effects via G-protein coupled receptor GPR55, with possibly reduced side-effects compared to the known anti-inflammatory drugs. In this study, we, therefore, evaluated the anti-inflammatory capacities of the two novel coumarin-based compounds, KIT C and KIT H, in human neuroblastoma cells and primary murine microglia. Both compounds reduced PGE2_{2}-concentrations likely via the inhibition of COX-2 synthesis in SK-N-SH cells but only KIT C decreased PGE2_{2}-levels in primary microglia. The examination of other pro- and anti-inflammatory parameters showed varying effects of both compounds. Therefore, the differences in the effects of KIT C and KIT H might be explained by functional selectivity as well as tissue- or cell-dependent expression and signal pathways coupled to GPR55. Understanding the role of chemical residues in functional selectivity and specific cell- and tissue-targeting might open new therapeutic options in pharmacological drug development and might improve the treatment of the mentioned diseases by intervening in an early step of their pathogenesis

    A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway

    Get PDF
    BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17 that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth

    Addition of dithi(ol)anylium tetrafluoroborates to α,ÎČ-unsaturated ketones

    No full text
    In the presented study, dithi(ol)anylium tetrafluoroborates are added to α,ÎČ-unsaturated ketones in a Michael-type reaction yielding diverse substituted ketene diothi(ol)anes. The reactions proceed at room temperature in 1 or 13 h without the need of further additives. The presented procedure is in particular useful for dithi(ol)anylium tetrafluoroborates without electron-withdrawing groups in α-position. This is advantageous with respect to previous approaches, which were limited to the use of ketene dithioacetals substituted with electron-withdrawing groups. Aiming for the systematic investigation of possible steric and electronic influences on the outcome of the reaction, various combinations of electrophiles and nucleophiles were used and the results of the reactions were compared based on the type of the used dithioacetal. The scope of the presented procedure is shown with four additional transformations including the use of additional electrophiles and nucleophiles, the use of a chiral auxiliary and subsequent reduction of selected products. Additionally, we extended the reaction to the synthesis of diene dithiolanes by addition of an ynone to α-alkyl or aryl-substitued dithiolanylium TFBs

    A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway

    Get PDF
    International audienceBAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis, and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17, that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth
    corecore