5 research outputs found

    Articular Chondrocyte Network Mediated by Gap Junctions: Role in Metabolic Cartilage Homeostasis

    Get PDF
    Objective This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels. Methods Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy. Co-immunoprecipitation experiments and mass spectrometry (MS) were performed to identify proteins that interact with the C-terminal end of Cx43. GJ communication was studied through in situ electroporation, electrophysiology and dye injection experiments. A transwell layered culture system and MS were used to identify and quantify transferred amino acids. Results Microscopic images revealed the presence of multiple cellular projections connecting chondrocytes within the matrix. These projections were between 5 and 150 μm in length. MS data analysis indicated that the C-terminus of Cx43 interacts with several cytoskeletal proteins implicated in Cx trafficking and GJ assembly, including α-tubulin and β-tubulin, actin, and vinculin. Electrophysiology experiments demonstrated that 12-mer oligonucleotides could be transferred between chondrocytes within 12 min after injection. Glucose was homogeneously distributed within 22 and 35 min. No transfer was detected when glucose was electroporated into A549 cells, which have no GJs. Transwell layered culture systems coupled with MS analysis revealed connexins can mediate the transfer of L-lysine and L-arginine between chondrocytes. Conclusions This study reveals that intercellular connections between chondrocytes contain GJs that play a key role in cell-cell communication and a metabolic function by exchange of nutrients including glucose and essential amino acids. A three-dimensional cellular network mediated through GJs might mediate metabolic and physiological homeostasis to maintain cartilage tissue

    Effect of balneotherapy in sulfurous water on an in vivo murine model of osteoarthritis

    Get PDF
    [Abstract] Osteoarthritis (OA) is a chronic joint disease that results in progressive cartilage destruction and subsequently joint dysfunction. Growing evidence indicates beneficial impact of balneological interventions in OA; however, their mechanisms of action are still unclear. Here, we evaluate the effect of balneotherapy in sulfurous water in an OA experimental model. Experimental OA was induced in Wistar rats by transection of the medial collateral ligament and removal of the medial meniscus of the left knee. Animals were randomized into three groups: non-treated (control) and balneotherapy using sulfurous water (SW) or tap water (TW). Macroscopic evaluation was performed, as well as evaluation of pain levels and analysis of motor function by rotarod test. Histopathological changes in articular cartilage and synovium were also evaluated. The presence of matrix metalloproteinase-13 (MMP-13) and oxidative damage markers was assessed by immunohistochemistry. Joint destabilization induced joint thickening, loss of joint flexion, and increased levels of pain. At day 40, animals from SW group presented lower pain levels than those from control group. Experimental OA also affected motor function. Balneotherapy in sulfur-rich water significantly improved joint mobility in relation to that in tap water. Besides, we observed that cartilage deterioration was lower in SW group than in the other two groups. Likewise, SW group showed reduced levels of MMP-13 in the cartilage. Conversely, we failed to observe any modulation on synovial inflammation. Finally, balneotherapy in sulfurous water diminished the presence of oxidative damage markers. Our results suggest the beneficial effect of balneotherapy in sulfur-rich water on an experimental model of OA, showing a reduced cartilage destruction and oxidative damage. Thus, these findings support the use of balneotherapy as a non-pharmacological treatment in OA.Instituto de Salud Carlos III; PI16/02124Xunta de Galicia; AGRUP2015/05 CICA-INIBICXunta de Galicia; IN607A 2017/11(GPC
    corecore