14 research outputs found

    Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?

    Get PDF
    Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel

    Obesity, inflammation, and insulin resistance

    Get PDF
    White adipose tissue (WAT) is considered an endocrine organ. When present in excess, WAT can influence metabolism via biologically active molecules. Following unregulated production of such molecules, adipose tissue dysfunction results, contributing to complications associated with obesity. Previous studies have implicated pro- and anti-inflammatory substances in the regulation of inflammatory response and in the development of insulin resistance. In obese individuals, pro-inflammatory molecules produced by adipose tissue contribute to the development of insulin resistance and increased risk of cardiovascular disease. On the other hand, the molecules with anti-inflammatory action, that have been associated with the improvement of insulin sensitivity, have your decreased production. Imbalance of these substances contributes significantly to metabolic disorders found in obese individuals. The current review aims to provide updated information regarding the activity of biomolecules produced by WAT

    Estrogen-Induced Developmental Disorders of the Rat Penis Involve Both Estrogen Receptor (ESR)- and Androgen Receptor (AR)-Mediated Pathways1

    No full text
    This study tested the hypothesis that the estrogen receptor (ESR) pathway, androgen receptor (AR) pathway, or both mediate estrogen-induced developmental penile disorders. Rat pups received diethylstilbestrol (DES), with or without the ESR antagonist ICI 182,780 (ICI) or the AR agonist dihydrotestosterone (DHT) or testosterone (T), from Postnatal Days 1 to 6. Testicular T concentration, penile morphology and morphometry, and/or fertility was determined at age 7, 28, or 150 days. DES treatment alone caused 90% reduction in the neonatal intratesticular T surge; this reduction was prevented by ICI coadministration, but not by DHT or T coadministration. Unlike the T surge, coadministration of ICI and coadministration of DHT or T mitigated penile deformities and loss of fertility. Generally, ICI, DHT, or T treatment alone did not alter penile morphology; however, fertility was 20% that of controls in ICI-treated rats vs. 70%–90% in DHT- or T-treated rats. The lower fertility in the rats treated with ICI alone could be due to altered sexual behavior, as these males did not deposit vaginal plugs. In conclusion, observations that both an ESR antagonist and AR agonists prevent penile deformities and infertility suggest that both pathways are involved in estrogen-induced penile disorders. Observations that coadministration of ICI, but not DHT or T, prevents the DES-induced reduction in the neonatal T surge suggest that, although ICI exerts its mitigating effect both at the level of Leydig cells and penile stromal cells, DHT and T do so only at the level of stromal cells
    corecore