7 research outputs found

    Hardness of Approximation for Euclidean k-Median

    Get PDF
    The Euclidean k-median problem is defined in the following manner: given a set ? of n points in d-dimensional Euclidean space ?^d, and an integer k, find a set C ? ?^d of k points (called centers) such that the cost function ?(C,?) ? ?_{x ? ?} min_{c ? C} ?x-c?? is minimized. The Euclidean k-means problem is defined similarly by replacing the distance with squared Euclidean distance in the cost function. Various hardness of approximation results are known for the Euclidean k-means problem [Pranjal Awasthi et al., 2015; Euiwoong Lee et al., 2017; Vincent Cohen{-}Addad and {Karthik {C. S.}}, 2019]. However, no hardness of approximation result was known for the Euclidean k-median problem. In this work, assuming the unique games conjecture (UGC), we provide the hardness of approximation result for the Euclidean k-median problem in O(log k) dimensional space. This solves an open question posed explicitly in the work of Awasthi et al. [Pranjal Awasthi et al., 2015]. Furthermore, we study the hardness of approximation for the Euclidean k-means/k-median problems in the bi-criteria setting where an algorithm is allowed to choose more than k centers. That is, bi-criteria approximation algorithms are allowed to output ? k centers (for constant ? > 1) and the approximation ratio is computed with respect to the optimal k-means/k-median cost. We show the hardness of bi-criteria approximation result for the Euclidean k-median problem for any ? < 1.015, assuming UGC. We also show a similar hardness of bi-criteria approximation result for the Euclidean k-means problem with a stronger bound of ? < 1.28, again assuming UGC

    FPT Approximation for Constrained Metric k-Median/Means

    Get PDF
    The Metric kk-median problem over a metric space (X,d)(\mathcal{X}, d) is defined as follows: given a set LXL \subseteq \mathcal{X} of facility locations and a set CXC \subseteq \mathcal{X} of clients, open a set FLF \subseteq L of kk facilities such that the total service cost, defined as Φ(F,C)xCminfFd(x,f)\Phi(F, C) \equiv \sum_{x \in C} \min_{f \in F} d(x, f), is minimised. The metric kk-means problem is defined similarly using squared distances. In many applications there are additional constraints that any solution needs to satisfy. This gives rise to different constrained versions of the problem such as rr-gather, fault-tolerant, outlier kk-means/kk-median problem. Surprisingly, for many of these constrained problems, no constant-approximation algorithm is known. We give FPT algorithms with constant approximation guarantee for a range of constrained kk-median/means problems. For some of the constrained problems, ours is the first constant factor approximation algorithm whereas for others, we improve or match the approximation guarantee of previous works. We work within the unified framework of Ding and Xu that allows us to simultaneously obtain algorithms for a range of constrained problems. In particular, we obtain a (3+ε)(3+\varepsilon)-approximation and (9+ε)(9+\varepsilon)-approximation for the constrained versions of the kk-median and kk-means problem respectively in FPT time. In many practical settings of the kk-median/means problem, one is allowed to open a facility at any client location, i.e., CLC \subseteq L. For this special case, our algorithm gives a (2+ε)(2+\varepsilon)-approximation and (4+ε)(4+\varepsilon)-approximation for the constrained versions of kk-median and kk-means problem respectively in FPT time. Since our algorithm is based on simple sampling technique, it can also be converted to a constant-pass log-space streaming algorithm

    On Sampling Based Algorithms for k-Means

    Get PDF
    corecore