47 research outputs found

    The roles of vicariance and isolation by distance in shaping biotic diversification across an ancient archipelago: evidence from a Seychelles caecilian amphibian

    Get PDF
    © 2020 The Authors. Published by BMC. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1186/s12862-020-01673-wBackground Island systems offer excellent opportunities for studying the evolutionary histories of species by virtue of their restricted size and easily identifiable barriers to gene flow. However, most studies investigating evolutionary patterns and processes shaping biotic diversification have focused on more recent (emergent) rather than ancient oceanic archipelagos. Here, we focus on the granitic islands of the Seychelles, which are unusual among island systems because they have been isolated for a long time and are home to a monophyletic radiation of caecilian amphibians that has been separated from its extant sister lineage for ca. 65–62 Ma. We selected the most widespread Seychelles caecilian species, Hypogeophis rostratus, to investigate intraspecific morphological and genetic (mitochondrial and nuclear) variation across the archipelago (782 samples from nine islands) to identify patterns and test processes that shaped their evolutionary history within the Seychelles. Results Overall a signal of strong geographic structuring with distinct northern- and southern-island clusters were identified across all datasets. We suggest that these distinct groups have been isolated for ca. 1.26 Ma years without subsequent migration between them. Populations from the somewhat geographically isolated island of Frégate showed contrasting relationships to other islands based on genetic and morphological data, clustering alternatively with northern-island (genetic) and southern-island (morphological) populations. Conclusions Although variation in H. rostratus across the Seychelles is explained more by isolation-by-distance than by adaptation, the genetic-morphological incongruence for affinities of Frégate H. rostratus might be caused by local adaptation over-riding the signal from their vicariant history. Our findings highlight the need of integrative approaches to investigate fine-scale geographic structuring to uncover underlying diversity and to better understand evolutionary processes on ancient, continental islands.Funding for this research was provided by two grants from the National Science Foundation (BSR 88–17453, BSR 90–24505) [funding for fieldwork and lab work], two grants from the National Geographic Society (Grants 1977: 1633, 1743) [funding for fieldwork], three grants from the University of Michigan Office of the Vice President for Research, and a Research Partnership Award from the University of Michigan to RAN [morphology work]; a joint NHM-UCL IMPACT studentship [to fund STM’s PhD, lab work and fieldwork], Mohamed Bin Zayed Species Conservation Fund [funding for fieldwork] and Systematics Research Fund [funding for fieldwork] to STM; an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant #P20GM103408 to LL [funding for lab work]; a NERC/BBSRC SynTax grant [funding for fieldwork and collaboration], and Darwin Initiative (grant 19–002) [funding for fieldwork, lab work and capacity building] with partners Bristol University, Islands Conservation Society, Seychelles Islands Foundation, Seychelles Ministry of Environment, Seychelles National Parks Authority, Seychelles Natural History Museum, University of Kent, Zoological Society of London to MW, DJG, JJD. The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.Published onlin

    Oxamniquine resistance alleles are widespread in Old World Schistosoma mansoni and predate drug deployment

    Get PDF
    Do mutations required for adaptation occur de novo, or are they segregating within populations as standing genetic variation? This question is key to understanding adaptive change in nature, and has important practical consequences for the evolution of drug resistance. We provide evidence that alleles conferring resistance to oxamniquine (OXA), an antischistosomal drug, are widespread in natural parasite populations under minimal drug pressure and predate OXA deployment. OXA has been used since the 1970s to treat Schistosoma mansoni infections in the New World where S. mansoni established during the slave trade. Recessive loss-of-function mutations within a parasite sulfotransferase (SmSULT-OR) underlie resistance, and several verified resistance mutations, including a deletion (p.E142del), have been identified in the New World. Here we investigate sequence variation in SmSULT-OR in S. mansoni from the Old World, where OXA has seen minimal usage. We sequenced exomes of 204 S. mansoni parasites from West Africa, East Africa and the Middle East, and scored variants in SmSULT-OR and flanking regions. We identified 39 non-synonymous SNPs, 4 deletions, 1 duplication and 1 premature stop codon in the SmSULT-OR coding sequence, including one confirmed resistance deletion (p.E142del). We expressed recombinant proteins and used an in vitro OXA activation assay to functionally validate the OXA-resistance phenotype for four predicted OXA-resistance mutations. Three aspects of the data are of particular interest: (i) segregating OXA-resistance alleles are widespread in Old World populations (4.29–14.91% frequency), despite minimal OXA usage, (ii) two OXA-resistance mutations (p.W120R, p.N171IfsX28) are particularly common (>5%) in East African and Middle-Eastern populations, (iii) the p.E142del allele has identical flanking SNPs in both West Africa and Puerto Rico, suggesting that parasites bearing this allele colonized the New World during the slave trade and therefore predate OXA deployment. We conclude that standing variation for OXA resistance is widespread in S. mansoni

    Polycystic ovary syndrome

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide. The condition is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology (PCOM) - with excessive androgen production by the ovaries being a key feature of PCOS. Metabolic dysfunction characterized by insulin resistance and compensatory hyperinsulinaemia is evident in the vast majority of affected individuals. PCOS increases the risk for type 2 diabetes mellitus, gestational diabetes and other pregnancy-related complications, venous thromboembolism, cerebrovascular and cardiovascular events and endometrial cancer. PCOS is a diagnosis of exclusion, based primarily on the presence of hyperandrogenism, ovulatory dysfunction and PCOM. Treatment should be tailored to the complaints and needs of the patient and involves targeting metabolic abnormalities through lifestyle changes, medication and potentially surgery for the prevention and management of excess weight, androgen suppression and/or blockade, endometrial protection, reproductive therapy and the detection and treatment of psychological features. This Primer summarizes the current state of knowledge regarding the epidemiology, mechanisms and pathophysiology, diagnosis, screening and prevention, management and future investigational directions of the disorder.Robert J Norman, Ruijin Wu and Marcin T Stankiewic
    corecore