19 research outputs found

    Effects of bovine parathyroid hormone and 1,25-dihydroxyvitamin D3 on the production of prostaglandins by cells derived from human bone

    Get PDF
    AbstractLocal production of prostaglandins by osteoblasts may be important in controlling the bone resorbing activity of some hormones which have receptors on osteoblasts. We have demonstrated that osteoblast-like cells derived from human bone can incorporate [14C]arachidonic acid into phospholipids and synthesise immunoreactive PGE. Parathyroid hormone increases both the release of incorporated arachidonic acid and the synthesis of PGE. This is the first demonstration of modulation of bone cell prostaglandin synthesis by a bone resorbing hormone

    A selective inhibitor of the osteoclastic V-H(+)-ATPase prevents bone loss in both thyroparathyroidectomized and ovariectomized rats

    Get PDF
    A potent and selective inhibitor of the osteoclastic V-H(+)-ATPase, (2Z,4E)-5-(5,6-dichloro-2-indolyl)-2-methoxy-N-(1,2,2,6,6-pentamethylpiperidin-4-yl) -2,4-pentadienamide (SB 242784), was evaluated in two animal models of bone resorption. SB 242784 completely prevented retinoid-induced hypercalcemia in thyroparathyroidectomized (TPTX) rats when administered orally at 10 mg/kg. SB 242784 was highly efficacious in the prevention of ovariectomy-induced bone loss in the rat when administered orally for 6 months at 10 mg/kg/d and was partially effective at 5 mg/kg/d. Its activity was demonstrated by measurement of bone mineral density (BMD), biochemical markers of bone resorption, and histomorphometry. SB 242784 was at least as effective in preventing bone loss as an optimal dose of estrogen. There were no adverse effects of compound administration and no effects on kidney function or urinary acidity. Selectivity of the inhibitor was further studied using an in situ cytochemical assay for bafilomycin-sensitive V-H(+)-ATPase using sections of osteoclastoma and numerous other tissues. SB 242784 inhibited the osteoclast enzyme at 1,000-fold lower concentrations than enzymes in any of the other tissues evaluated. SB 242784 demonstrates the utility of selective inhibition of the osteoclast V-H(+)-ATPase as a novel approach to the prevention of bone loss in humans
    corecore