34 research outputs found

    Degradation of Textile Dye Reactive Navy – Blue Rx (Reactive blue–59) by an Isolated Actinomycete Streptomyces krainskii SUK – 5

    Get PDF
    The isolated Actinomycete, Streptomyces krainskii, SUK -5 was found to decolorize and degrade textile dye Reactive blue–59.This azo dye was decolorized and degraded completely by Streptomyces krainskii SUK–5 at 24 h in shaking condition in the nutrient medium at pH 8. Induction in the activity of Lignin Peroxidase,and NADH-DCIP Reductase and MR reductase represents their role in degradation .The biodegradation was monitored by TLC, UV vis spectroscopy, FTIR. and GCMS analysis. Microbial and phytotoxicity studies of the product were carried out

    Research Paper - Effect of sodium sulfadimethylpyrimidine on multiple forms of cytochrome P450 in chicken

    No full text
    OBJECTIVE: To study the effect of sodium sulfadimethylpyrimidine (SDMP) on different forms of CYP 450 enzymes induced by phenobarbital (CYP 2B1, 2B2 and 3A), isoniazid (CYP 2E1), benzo(a)pyrene (CYP 1A1), clotrimazole (CYP 3A), and clofibrate (CYP 4A). MATERIALS AND METHODS: Chickens (Hubbard, male) weighing 250-300 g were divided into 17 groups of six each. Five experimental sets were prepared containing three subgroups each to test five different inducers. Microsomes were isolated by calcium precipitation. The levels of electron transport components, CYP 450, cytochrome b5, and cytochrome c-reductase were determined using extinction coefficients. Activities of drug-metabolizing enzymes were assayed. RESULTS: All inducers (phenobarbital, isoniazid, benzo(a)pyrene, clotrimazole, and clofibrate) showed significant induction of mixed function oxidase in chicken. The SDMP treatment of inducer-pretreated chicken caused a significant decrease in electron transport components and activities of drug-metabolizing enzymes when compared with treatment of inducer alone. Phenobarbital, isoniazid, and benzo(a)pyrene treatments of SDMP-pretreated chicken showed no significant change in induction pattern, however, significant alterations were observed in the induction pattern of clotrimazole and clofibrate. CONCLUSION : Our studies suggest that CYP 2B1, 2B2, 3A; CYP 2E1; CYP 1A1; CYP 3A and CYP 4A are susceptible species of CYP 450 to SDMP and its metabolites. The SDMP also affected in the induction pattern of some of the inducers with respect to CYP 450 isoforms

    Decolorisation of textile dyes by <i style="">Aspergillus ochraceus</i> (NCIM-1146)

    No full text
    407-410Aspergillus ochraceus (NCIM-1146) has ability to decolorize various xenobiotic dyes. Biodegradation of dyes was demonstrated by their decolorisation in the culture medium. The extent of biodegradation was determined by monitoring the decrease in absorbance of each dye. Malachite green decolorisation activity is affected by various conditions such as composition of media, concentration of dye, amount of mycelia and agitation. The durability of decolorisation activity under optimum conditions was investigated in repeated batch mode. An increase in the amount of mycelia positively affected the durability of decolorisation activity. The decrease in dye decolorisation capability of mycelia occurred with increasing dye concentration in repeated batch mode. Spectrophotometric data revealed that the process involved in decolorisation is through microbial metabolism but not biosorption. This study showed that fungal mycelia (A. ochraceus) could effectively be used as an alternative to the traditional physico-chemical process

    Biodegradation of green he4b: co-substrate effect, biotransformation enzymes and metabolite toxicity analysis

    No full text
    A high exhaust reactive dye, Green HE4B (GHE4B) was 98% degraded in nutrient medium by Pseudomonas desmolyticum NCIM 2112 (pd2112) within 72 h at static condition. Decolorization time in synthetic 10 g/l molasses. Addition of 5 g/l peptone to NaCl medium had reduced decolorization time from 108 to 72 h. Beef extract do not contribute more to the inducing effect of peptone, however it is a good co-substrate in sucrose or urea containing NaCl medium. Intracellular lignin peroxidase (Lip), laccase and tyrosinase activities were induced by 150, 355 and 212%, respectively till maximum dye removal took place. Aminopyrine N-demethylase (AND) and dichlorophenol indophenol reductase (DCIP-reductase) activities in pd2112 were induced by 130 and 20%, respectively at 72 h of incubation during GHE4B decolorization. By high performance liquid chromatography (HPLC) analysis, 4-hydroxybenzene sulfonic acid and 4-amino, 6-hydroxynaphthalene 2-sulfonic acids were identified as metabolites formed during 24-72 h incubation. Fourier transform infrared spectroscopy (FTIR) analysis supports the formation of these aromatic amines. pd2112, aerobically degraded GHE4B metabolites (formed at static condition) showing stationary phase of 6 days. There was no germination inhibition of Sorghum bicolor and Triticum aestivum by GHE4B metabolites at 3,000 ppm concentration however untreated dye showed germination inhibition at the same concentration. GHE4B metabolites did not show any microbial toxicity at 10,000 ppm concentration

    Phytoextracts protect <i>Saccharomyces cerevisiae</i> from oxidative stress with simultaneous enhancement in bioremediation efficacy

    Get PDF
    469-478Bioremediation efficacies are highly affected by abiotic stresses imparted by a verity of pollutants due to generation of reactive oxygen species (ROS). These stressed cells can be treated using natural or synthetic antioxidants. Such an approach could prove beneficial to bioremediation agents as the exogenously added antioxidant compounds would scavenge the generated free radicals. This would definitely lead to increased longevity of the involved organism and carry out superior treatments. In present study, Malachite Green (MG) was found to exert oxidative stress on Saccharomyces cerevisiae through generation ROS. A 2 h exposure of MG though achieved 99% decolourization, the cells revealed a significant decrease (97.8%) in colony forming units (CFU) upon further subculture. Natural antioxidants from Centella asiatica, Phyllanthus emblica, Asperagus racemosus and Tinospora cordifolia extracts, however, restored the CFU with a loss of only 16-33%. The MG stressed cells indicated an increase in ROS by 6.7 fold which was reduced to near normal due to augmentation with plant extracts. MG damaged the nuclear material up to 90% and inclusion of phytoextracts protected the cells revealing only 0-7% nuclear damage. Induction in apoptosis (92%) and necrosis (23%) in MG exposed cells was noted, while plant extracts augmentation reduced apoptosis to 15-49% and necrosis to 10-16%. Activities of antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase were significantly decreased in phyto-augmented cells when compared to MG stressed cells. Dye degrading enzymes, namely lignin peroxidase, laccase, NADH-DCIP reductase and MG reductase were found to show induction in activities during MG utilization. Since antioxidants from plant extracts could protect the cells form oxidative stress, they were used to treat MG for 20 continuous decolourization cycles. Augmentation of C. asiatica, P. emblica, A. racemosus and T. cordifolia extracts at 20th decolourization cycle revealed 75, 79, 74 and 93% superior decolorization efficacies as compared to unaugmented cells. These natural antioxidants to protect bioremediation agents form oxidative stress, thus concluded to show enhanced treatment

    Conserved nature of Helicoverpa armigera gut bacterial flora on different host plants and in vitro interactions with PI proteins advocates role in host digestive physiology

    No full text
    Helicoverpa armigera is anxious insect pest of agricultural crops. Array of defensive molecules in host plants and extensive use of chemical insecticides are unable to cease the attack incidences. Gut bacterial communities are found to contribute in various physiological activities in most of the arthropods. In the current study the bacterial communities were isolated from gut of H. armigera feeding on three host plants (Pigeonpea, Chickpea and Cotton) by culture dependent and culture independent methods. Predominant bacterial communities were identified by terminal restriction fragment length polymorphism (TRFLP). Three dominant phylotypes namely proteobacteria, actinobacteria and firmicutes were identified by TRFLP and found to conserve on different host plant selected. Five Bacillus species namely Bacillus sp. JR14, Bacillus sp. YP1, Bacillus safensis CG1, Bacillus subtillis KAVK2 and Bacillus megaterium 47N were purified by culture dependent method and identified by 16S rRNA sequencing. Among all identified Bacillus, Bacillus sp. YP1 strain was found to be potent protease producer as assisted by dot-blot assay and in vitro solution assays. The in vitro interactions of these proteases with host plant PIs were studied by reverse zymography and gel X-ray contact print (GXCP) analysis. Reduction in activity of PIs and degradation pattern of PI bands on gels in presence of trypsin and protease extract of Bacillus sp. YP1 indicates inactivation of PIs. Thus, conserved nature and in vitro response to PI proteins advocates role of gut bacterial flora in H. armigera digestive physiology. Keywords: H. armigera, Gut bacterial proteases, Host plant defense, PIs, TRFL

    New molecular phylogenetic evidence for Indian endemic species of the tribe Merremieae, Convolvulaceae

    No full text
    Recent advances in molecular phylogenetics in the family Convolvulaceae Juss., (particularly in formerly recognized tribe Merremieae) have brought new insights on generic delimitation. Therefore, many species were transferred across genera to accommodate in the new classification. However, additional morphological and molecular analyses are still needed to address the affinities and position of some species formerly included in Merremia Dennst. ex Endl.s.l. and allied genera. In this study, we provide a phylogenetic framework for the placement of Indian species in a new generic arrangement and to address the status of doubtful distinct species. Distimake rhyncorhiza (Dalzell) A.R.Simões & Staples is proved to have its place in Distimake Raf., while Operculina tansaensis Santapau & Patel is validated as a distinct species from O. turpethum (L.) Silva Manso. A nomenclatural clarification for the misuse of the name “Merremia gangetica (L.) Cufod.” in India is provided, with an encouragement to use the correct name Merremia emarginata (Burm.f.) Hallier f. The addition of the Indian species to the molecular phylogeny suggests the possible non-monophyly of Camonea Raf., and a new placement for Camonea vitifolia (Burm.f.) A.R.Simões & Staples, albeit still weakly supported. We have provided morphological descriptions, distribution maps and notes on nomenclature

    Exploiting the efficacy of <i>Lysinibacillus</i> sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies

    No full text
    <div><p>Complete decolorization and detoxification of Reactive Orange 4 within 5 h (pH 6.6, at 30°C) by isolated <i>Lysinibacillus</i> sp. RGS was observed. Significant reduction in TOC (93%) and COD (90%) was indicative of conversion of complex dye into simple products, which were identified as naphthalene moieties by various analytical techniques (HPLC, FTIR, and GC–MS). Supplementation of agricultural waste extract considered as better option to make the process cost effective. Oxido-reductive enzymes were found to be involved in the degradation mechanism. Finally <i>Loofa</i> immobilized <i>Lysinibacillus</i> sp. cells in a fixed-bed bioreactor showed significant decolorization with reduction in TOC (51 and 64%) and COD (54 and 66%) for synthetic and textile effluent at 30 and 35 mL h<sup>−1</sup> feeding rate, respectively. The degraded metabolites showed non-toxic nature revealed by phytotoxicity and photosynthetic pigments content study for <i>Sorghum vulgare</i> and <i>Phaseolus mungo</i>. In addition nitrogen fixing and phosphate solubilizing microbes were less affected in treated wastewater and thus the treated effluent can be used for the irrigation purpose. This work could be useful for the development of efficient and ecofriendly technologies to reduce dye content in the wastewater to permissible levels at affordable cost.</p></div
    corecore