8 research outputs found

    Mahim Bay: a polluted environment of Bombay

    Get PDF
    Distribution of the marine life in relation to the extent of pollution at and outside Mahim Bay was studied. A poor marine fauna at stations A and B was associated with a relatively high intensity of pollution accompanied by high BOD and nutrients and low DO levels. A distinct deterioration in the marine life and water quality along the northern part of the bay as compared to the southern part was evident. An increasing trend in the marine fauna with decreasing intensity of pollution from inside to outside the bay was noticed

    Biomass and composition of zooplankton in and around Gulf of Kutch

    Get PDF
    The faunal composition, distribution and abundance of zooplankton from 28 stations in and around the Gulf of Kutch, were studied during INS Darshak cruise in January, 1975. Zooplankton biomass was about 4.5 times more in the outside Gulf region (mean: 50.3 ml/100 m super(3)) than in the inside Gulf (mean: 11.1 ml/100 m super(3)). The mean zooplankton biomass of Dwarka (66.3 ml/100 m super(3)) was about 2.5 times more than that off Okha (26.8 ml/100 m super(3)). A rich zooplankton production in the Saurashtra waters corresponded to a rich fishery prevailing in this region

    Biological productivity and fishery potential in the coastal waters off Bombay

    Get PDF
    Fishery potential of the nearshore waters of Bombay is estimated from the observed values of biological productivity at different trophic levels. The rate of primary and secondary production is relatively higher in the polluted coastal waters of Versova, Mahim and Thana. Observed mean benthic standing stock in the polluted creek waters is far less than the relatively unpolluted coastal regions off Bombay. Results suggest that the higher productivity at the lower trophic levels due to pollution, may not end up with high tertiary production. Therefore, such polluted regions are to be classified as special ecosystems where the transfer coefficient may be far less than the assumed 10% conversion factor

    Low‐temperature tolerance in coprophagic beetle species (Coleoptera: Scarabaeidae): implications for ecological services

    No full text
    1. Low temperatures affect insect functioning and population dynamics. Although temperate species cope with low temperatures better than their tropical counterparts, increasing temperature variability due to climate change exposes tropical species to frequent cold stress. For keystone insect species providing important ecosystem services, low-temperature tolerances, and behavioural responses remain unknown, hampering predictions under climate change. 2. The present study examined low-temperature physiology [critical thermal minima (CTmin) and chill coma recovery time (CCRT)] of six dung beetle species across three activity times: diurnal Allogymnopleurus indigaceous (Reiche) and Euoniticellus intermedius (Reiche); crepuscular Onthophagus alexis (Klug) and Onthophagus gazella (Fabricius), and; nocturnal Copris elephenor (Klug) and Scarabaeus zambezianus (Peringuey). Further, ecological service delivery (dung removal) was examined between diurnal and nocturnal species across the temperature regimes. 3. Nocturnal species had significantly greater cold tolerance than both crepuscular and diurnal species, while CCRT was significantly shortest in diurnal than both crepuscular and nocturnal species. Dung ball production between diurnal and nocturnal species interacted with temperature, with diurnal species producing significantly fewer balls at low temperatures, while nocturnal beetles were not significantly affected. In turn, nocturnal species produced significantly larger balls than the diurnal species across temperatures. Effects of temperature regime shifts were intertwined with the foraging ecology of individual species. 4. Future research should quantify species' functional responses toward different amounts of dung masses as stressful temperatures increase. 5. Results are significant for determination of species thermal ranges and predicting costs of low-temperature stress through reduced ecological services under shifting thermal environments

    Phosphors Based on Phosphates of NaZr2(PO4)3 and Langbeinite Structural Families

    No full text

    Pan-cancer analysis of whole genomes

    No full text
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation; analyses timings and patterns of tumour evolution; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity; and evaluates a range of more-specialized features of cancer genomes
    corecore