784 research outputs found

    Small-scale sediment transport and deposition patterns within a salt-marsh basin, Paulinaschor, Western Scheldt

    Get PDF
    During inundation of tidal marshes, fine-grained suspended matter is transported to and partly deposited on the marsh surface. In this research the complex spatial patterns of sediment transport and deposition are studied at the temporal scale of individual inundations and spatial scale of a small tidal creek basin (ca. 6 ha) within the salt Paulina marsh, Western Scheldt. Field measurements are used for the implementation and validation of 2-dimensional numerical models for tidal marsh sedimentation. Near the mouth of the creek system, the incoming and outgoing sediment mass is estimated, by way of water level, flow velocity and suspended sediment concentration (SSC) measurements. Spatial variations in SSC, at the moment of marsh inundation, are measured at about 35 locations within the creek system and above the marsh surface, using siphon samplers. Finally the sediment that is deposited on the marsh surface is sampled with sediment traps on 50 sites, both during 4 individual inundations (about 4-5 hours) and 2 spring-neap tidal cycles (15 days). First, it is investigated how the 2-dimensional pattern of SSC and sedimentation can be described by statistical models, incorporating detailed topographic information on the creek network, surface elevation and vegetation pattern. Secondly, the application of physically-based hydrodynamic models, coupled with sediment transport models, is explored and evaluated against the field data. Once validated, these models may be useful to simulate flooding and sedimentation patterns in other tidal marshes and controlled inundation areas in the Scheldt estuary

    Phytophthora infestans Has a Plethora of Phospholipase D Enzymes Including a Subclass That Has Extracellular Activity

    Get PDF
    In eukaryotes phospholipase D (PLD) is involved in many cellular processes. Currently little is known about PLDs in oomycetes. Here we report that the oomycete plant pathogen Phytophthora infestans has a large repertoire of PLDs divided over six subfamilies: PXPH-PLD, PXTM-PLD, TM-PLD, PLD-likes, and type A and B sPLD-likes. Since the latter have signal peptides we developed a method using metabolically labelled phospholipids to monitor if P. infestans secretes PLD. In extracellular medium of ten P. infestans strains PLD activity was detected as demonstrated by the production of phosphatidic acid and the PLD specific marker phosphatidylalcohol

    Impact of vegetation die-off on spatial flow patterns over a tidal marsh

    Get PDF
    Large-scale die-off of tidal marsh vegetation, caused by global change, is expected to change flow patterns over tidal wetlands, and hence to affect valuable wetland functions such as reduction of shoreline erosion, attenuation of storm surges, and sedimentation in response to sea level rise. This study quantified for the first time the effects of large-scale (4 ha) artificial vegetation removal, as proxy of die-off, on the spatial flow patterns through a tidal marsh channel and over the surrounding marsh platform. After vegetation removal, the flow velocities measured on the platform increased by a factor of 2 to 4, while the channel flow velocities decreased by almost a factor of 3. This was associated with a change in flow directions on the platform, from perpendicular to the channel edges when vegetation was present, to a tendency of more parallel flow to the channel edges when vegetation was absent. Comparison with hydrodynamic model simulations explains that the vegetation-induced friction causes both flow reduction on the vegetated platform and flow acceleration towards the non-vegetated channels. Our findings imply that large-scale vegetation die-off would not only result in decreased platform sedimentation rates, but also in sediment infilling of the channels, which together would lead to further worsening of plant growth conditions and a potentially runaway feedback to permanent vegetation loss. Citation: Temmerman, S., P. Moonen, J. Schoelynck, G. Govers, and T. J. Bouma (2012), Impact of vegetation die-off on spatial flow patterns over a tidal marsh, Geophys. Res. Lett., 39, L03406, doi: 10.1029/2011GL050502

    Anthropogenic impact on amorphous silica pools in temperate soils

    Get PDF
    Human land use changes perturb biogeochemical silica (Si) cycling in terrestrial ecosystems. This directly affects Si mobilisation and Si storage and influences Si export from the continents, although the magnitude of the impact is unknown. A major reason for our lack of understanding is that very little information exists on how land use affects amorphous silica (ASi) storage in soils. We have quantified and compared total alkali-extracted (PSi<sub>a</sub>) and easily soluble (PSi<sub>e</sub>) Si pools at four sites along a gradient of anthropogenic disturbance in southern Sweden. Land use clearly affects ASi pools and their distribution. Total PSi</sub>a</sub> and PSi<sub>e</sub> for a continuous forested site at Siggaboda Nature Reserve (66 900 ± 22 800 kg SiO<sub>2</sub> ha<sup>−1</sup> and 952 ± 16 kg SiO<sub>2</sub> ha<sup>−1</sup>) are significantly higher than disturbed land use types from the RĂ„shult Culture Reserve including arable land (28 800 ± 7200 kg SiO<sub>2</sub> ha<sup>−1</sup> and 239 ± 91 kg SiO<sub>2</sub> ha<sup>−1</sup>), pasture sites (27 300 ± 5980 kg SiO<sub>2</sub> ha<sup>−1</sup> and 370 ± 129 kg SiO<sub>2</sub> ha<sup>−1</sup>) and grazed forest (23 600 ± 6370 kg SiO<sub>2</sub> ha<sup>−1</sup> and 346 ± 123 kg SiO<sub>2</sub> ha<sup>−1</sup>). Vertical PSi<sub>a</sub> and PSi<sub>e</sub> profiles show significant (<i>p</i> < 0.05) variation among the sites. These differences in size and distribution are interpreted as the long-term effect of reduced ASi replenishment, as well as changes in ecosystem specific pedogenic processes and increased mobilisation of the PSi<sub>a</sub> in disturbed soils. We have also made a first, though rough, estimate of the magnitude of change in temperate continental ASi pools due to human disturbance. Assuming that our data are representative, we estimate that total ASi storage in soils has declined by ca. 10 % since the onset of agricultural development (3000 BCE). Recent agricultural expansion (after 1700 CE) may have resulted in an average additional export of 1.1 ± 0.8 Tmol Si yr<sup>−1</sup> from the soil reservoir to aquatic ecosystems. This is ca. 20 % to the global land-ocean Si flux carried by rivers. It is necessary to update this estimate in future studies, incorporating differences in pedology, geology and climatology over temperate regions, but data are currently not sufficient. Yet, our results emphasize the importance of human activities for Si cycling in soils and for the land-ocean Si flux

    Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modelling

    Get PDF
    Restoration of degraded land in the Southern Ecuadorian Andes has led to alterations in the functioning of degraded catchments. Recovery of vegetation on areas affected by overgrazing, as well as the reforestation or afforestation of gully areas have given rise to modifications of hydrological connectivity within the catchments. Recent research has highlighted the ability of gully channels to trap sediment eroded from steep slopes, especially if vegetation is established along the gully bed. However, vegetation cover not only induces sediment deposition in the gully bed, but may also have a potential to reduce runoff water volume. The performance of gully beds in reducing the transfer of runoff was investigated by conducting controlled concentrated flow experiments in the field. Experimental field data for nine gullies were derived by pouring concentrated inflow into the upstream end and measuring the outflow at the downstream end of the channel. Two consecutive flow experiments per gully were carried out, so that data for dry and wet soil conditions were collected. The hydrological response to concentrated flow was estimated for each experiment by calculating its cumulative infiltration coefficient, <i>IC</i> (%). The results showed a great difference in <i>IC</i> between dry and wet soil conditions. The <i>IC</i> for wet soil conditions was on average 24%, whereas it was 60% for dry conditions. Gullies with more than 50% surface vegetation cover exhibit the highest cumulative infiltration coefficients (81% for dry runs, and 34% for wet runs), but runoff transmission losses were not as clearly related to vegetation cover as sediment storage as shown in Molina et al. (2009). The experimental field data of 16 experiments were used to calibrate a hydrological model developed by Fiener and Auerswald (2005) in order to simulate the transfer of concentrated flow along the gully beds. The calibrated model was able to simulate the transfer of runoff water well, as the error on the simulated total outflow volumes is below 13% for 15 out of 16 cases. However, predicting infiltration amounts is difficult: the high sensitivity of model results to some crucial hydraulic parameters (runoff width, hydraulic conductivity and sorptivity) is one of the reasons why the relationships between model parameter values and gully features are relatively weak. <br><br> The results obtained from the field experiments show that gully systems are key elements in the hydrological connectivity of degraded landscapes. The transfer of overland flow and sediment from the slopes towards the river system highly depends on the presence/absence of vegetation in the gully beds and should therefore be accounted for in assessments of landscape degradation and/or recovery

    TWINLATIN: Twinning European and Latin-American river basins for research enabling sustainable water resources management. Combined Report D3.1 Hydrological modelling report and D3.2 Evaluation report

    Get PDF
    Water use has almost tripled over the past 50 years and in some regions the water demand already exceeds supply (Vorosmarty et al., 2000). The world is facing a “global water crisis”; in many countries, current levels of water use are unsustainable, with systems vulnerable to collapse from even small changes in water availability. The need for a scientifically-based assessment of the potential impacts on water resources of future changes, as a basis for society to adapt to such changes, is strong for most parts of the world. Although the focus of such assessments has tended to be climate change, socio-economic changes can have as significant an impact on water availability across the four main use sectors i.e. domestic, agricultural, industrial (including energy) and environmental. Withdrawal and consumption of water is expected to continue to grow substantially over the next 20-50 years (Cosgrove & Rijsberman, 2002), and consequent changes in availability may drastically affect society and economies. One of the most needed improvements in Latin American river basin management is a higher level of detail in hydrological modelling and erosion risk assessment, as a basis for identification and analysis of mitigation actions, as well as for analysis of global change scenarios. Flow measurements are too costly to be realised at more than a few locations, which means that modelled data are required for the rest of the basin. Hence, TWINLATIN Work Package 3 “Hydrological modelling and extremes” was formulated to provide methods and tools to be used by other WPs, in particular WP6 on “Pollution pressure and impact analysis” and WP8 on “Change effects and vulnerability assessment”. With an emphasis on high and low flows and their impacts, WP3 was originally called “Hydrological modelling, flooding, erosion, water scarcity and water abstraction”. However, at the TWINLATIN kick-off meeting it was agreed that some of these issues resided more appropriately in WP6 and WP8, and so WP3 was renamed to focus on hydrological modelling and hydrological extremes. The specific objectives of WP3 as set out in the Description of Work are
    • 

    corecore