1,036 research outputs found

    Computation of periodic solution bifurcations in ODEs using bordered systems

    Get PDF
    We consider numerical methods for the computation and continuation of the three generic secondary periodic solution bifurcations in autonomous ODEs, namely the fold, the period-doubling (or flip) bifurcation, and the torus (or Neimark–Sacker) bifurcation. In the fold and flip cases we append one scalar equation to the standard periodic BVP that defines the periodic solution; in the torus case four scalar equations are appended. Evaluation of these scalar equations and their derivatives requires the solution of linear BVPs, whose sparsity structure (after discretization) is identical to that of the linearization of the periodic BVP. Therefore the calculations can be done using existing numerical linear algebra techniques, such as those implemented in the software AUTO and COLSYS

    Quantisation without Gauge Fixing: Avoiding Gribov Ambiguities through the Physical Projector

    Get PDF
    The quantisation of gauge invariant systems usually proceeds through some gauge fixing procedure of one type or another. Typically for most cases, such gauge fixings are plagued by Gribov ambiguities, while it is only for an admissible gauge fixing that the correct dynamical description of the system is represented, especially with regards to non perturbative phenomena. However, any gauge fixing procedure whatsoever may be avoided altogether, by using rather a recently proposed new approach based on the projection operator onto physical gauge invariant states only, which is necessarily free on any such issues. These different aspects of gauge invariant systems are explicitely analysed within a solvable U(1) gauge invariant quantum mechanical model related to the dimensional reduction of Yang-Mills theory.Comment: 22 pages, no figures, plain LaTeX fil

    Predicted electric field near small superconducting ellipsoids

    Full text link
    We predict the existence of large electric fields near the surface of superconducting bodies of ellipsoidal shape of dimensions comparable to the penetration depth. The electric field is quadrupolar in nature with significant corrections from higher order multipoles. Prolate (oblate) superconducting ellipsoids are predicted to exhibit fields consistent with negative (positive) quadrupole moments, reflecting the fundamental charge asymmetry of matter.Comment: To be published in Phys.Rev.Let

    The Physical Projector and Topological Quantum Field Theories: U(1) Chern-Simons Theory in 2+1 Dimensions

    Get PDF
    The recently proposed physical projector approach to the quantisation of gauge invariant systems is applied to the U(1) Chern-Simons theory in 2+1 dimensions as one of the simplest examples of a topological quantum field theory. The physical projector is explicitely demonstrated to be capable of effecting the required projection from the initially infinite number of degrees of freedom to the finite set of gauge invariant physical states whose properties are determined by the topology of the underlying manifold.Comment: 24 pages, no figures, plain LaTeX file; one more reference added. Final version to appear in Jour. Phys.

    The N=1 Supersymmetric Landau Problem and its Supersymmetric Landau Level Projections: the N=1 Supersymmetric Moyal-Voros Superplane

    Get PDF
    The N=1 supersymmetric invariant Landau problem is constructed and solved. By considering Landau level projections remaining non trivial under N=1 supersymmetry transformations, the algebraic structures of the N=1 supersymmetric covariant non(anti)commutative superplane analogue of the ordinary N=0 noncommutative Moyal-Voros plane are identified

    Gauge Invariant Factorisation and Canonical Quantisation of Topologically Massive Gauge Theories in Any Dimension

    Full text link
    Abelian topologically massive gauge theories (TMGT) provide a topological mechanism to generate mass for a bosonic p-tensor field in any spacetime dimension. These theories include the 2+1 dimensional Maxwell-Chern-Simons and 3+1 dimensional Cremmer-Scherk actions as particular cases. Within the Hamiltonian formulation, the embedded topological field theory (TFT) sector related to the topological mass term is not manifest in the original phase space. However through an appropriate canonical transformation, a gauge invariant factorisation of phase space into two orthogonal sectors is feasible. The first of these sectors includes canonically conjugate gauge invariant variables with free massive excitations. The second sector, which decouples from the total Hamiltonian, is equivalent to the phase space description of the associated non dynamical pure TFT. Within canonical quantisation, a likewise factorisation of quantum states thus arises for the full spectrum of TMGT in any dimension. This new factorisation scheme also enables a definition of the usual projection from TMGT onto topological quantum field theories in a most natural and transparent way. None of these results rely on any gauge fixing procedure whatsoever.Comment: 1+25 pages, no figure

    Hybrid States from Constituent Glue Model

    Full text link
    The hybrid meson is one of the most interesting new hadron specie beyond the naive quark model. It acquire a great attention both from the theoretical and experimental efforts. Many good candidates have been claimed to be observed, but there is no absolute confirmation about existence of hybrid mesons. In the present work we propose new calculations of the masses and decay widths of the hybrid mesons in the context of constituent gluon model.Comment: 19 pages, 11 Table

    Gauge Fixing and BFV Quantization

    Get PDF
    Nonsingularity conditions are established for the BFV gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that anticommutator of this fermion with the BRST charge regularises the path integral by regularising the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.Comment: 14 page
    corecore