1,036 research outputs found
Computation of periodic solution bifurcations in ODEs using bordered systems
We consider numerical methods for the computation and continuation of the three generic secondary periodic solution bifurcations in autonomous ODEs, namely the fold, the period-doubling (or flip) bifurcation, and the torus (or Neimark–Sacker) bifurcation. In the fold and flip cases we append one scalar equation to the standard periodic BVP that defines the periodic solution; in the torus case four scalar equations are appended. Evaluation of these scalar equations and their derivatives requires the solution of linear BVPs, whose sparsity structure (after discretization) is identical to that of the linearization of the periodic BVP. Therefore the calculations can be done using existing numerical linear algebra techniques, such as those implemented in the software AUTO and COLSYS
Quantisation without Gauge Fixing: Avoiding Gribov Ambiguities through the Physical Projector
The quantisation of gauge invariant systems usually proceeds through some
gauge fixing procedure of one type or another. Typically for most cases, such
gauge fixings are plagued by Gribov ambiguities, while it is only for an
admissible gauge fixing that the correct dynamical description of the system is
represented, especially with regards to non perturbative phenomena. However,
any gauge fixing procedure whatsoever may be avoided altogether, by using
rather a recently proposed new approach based on the projection operator onto
physical gauge invariant states only, which is necessarily free on any such
issues. These different aspects of gauge invariant systems are explicitely
analysed within a solvable U(1) gauge invariant quantum mechanical model
related to the dimensional reduction of Yang-Mills theory.Comment: 22 pages, no figures, plain LaTeX fil
Predicted electric field near small superconducting ellipsoids
We predict the existence of large electric fields near the surface of
superconducting bodies of ellipsoidal shape of dimensions comparable to the
penetration depth. The electric field is quadrupolar in nature with significant
corrections from higher order multipoles. Prolate (oblate) superconducting
ellipsoids are predicted to exhibit fields consistent with negative (positive)
quadrupole moments, reflecting the fundamental charge asymmetry of matter.Comment: To be published in Phys.Rev.Let
The Physical Projector and Topological Quantum Field Theories: U(1) Chern-Simons Theory in 2+1 Dimensions
The recently proposed physical projector approach to the quantisation of
gauge invariant systems is applied to the U(1) Chern-Simons theory in 2+1
dimensions as one of the simplest examples of a topological quantum field
theory. The physical projector is explicitely demonstrated to be capable of
effecting the required projection from the initially infinite number of degrees
of freedom to the finite set of gauge invariant physical states whose
properties are determined by the topology of the underlying manifold.Comment: 24 pages, no figures, plain LaTeX file; one more reference added.
Final version to appear in Jour. Phys.
The N=1 Supersymmetric Landau Problem and its Supersymmetric Landau Level Projections: the N=1 Supersymmetric Moyal-Voros Superplane
The N=1 supersymmetric invariant Landau problem is constructed and solved. By
considering Landau level projections remaining non trivial under N=1
supersymmetry transformations, the algebraic structures of the N=1
supersymmetric covariant non(anti)commutative superplane analogue of the
ordinary N=0 noncommutative Moyal-Voros plane are identified
Gauge Invariant Factorisation and Canonical Quantisation of Topologically Massive Gauge Theories in Any Dimension
Abelian topologically massive gauge theories (TMGT) provide a topological
mechanism to generate mass for a bosonic p-tensor field in any spacetime
dimension. These theories include the 2+1 dimensional Maxwell-Chern-Simons and
3+1 dimensional Cremmer-Scherk actions as particular cases. Within the
Hamiltonian formulation, the embedded topological field theory (TFT) sector
related to the topological mass term is not manifest in the original phase
space. However through an appropriate canonical transformation, a gauge
invariant factorisation of phase space into two orthogonal sectors is feasible.
The first of these sectors includes canonically conjugate gauge invariant
variables with free massive excitations. The second sector, which decouples
from the total Hamiltonian, is equivalent to the phase space description of the
associated non dynamical pure TFT. Within canonical quantisation, a likewise
factorisation of quantum states thus arises for the full spectrum of TMGT in
any dimension. This new factorisation scheme also enables a definition of the
usual projection from TMGT onto topological quantum field theories in a most
natural and transparent way. None of these results rely on any gauge fixing
procedure whatsoever.Comment: 1+25 pages, no figure
Hybrid States from Constituent Glue Model
The hybrid meson is one of the most interesting new hadron specie beyond the
naive quark model. It acquire a great attention both from the theoretical and
experimental efforts. Many good candidates have been claimed to be observed,
but there is no absolute confirmation about existence of hybrid mesons. In the
present work we propose new calculations of the masses and decay widths of the
hybrid mesons in the context of constituent gluon model.Comment: 19 pages, 11 Table
Gauge Fixing and BFV Quantization
Nonsingularity conditions are established for the BFV gauge-fixing fermion
which are sufficient for it to lead to the correct path integral for a theory
with constraints canonically quantized in the BFV approach. The conditions
ensure that anticommutator of this fermion with the BRST charge regularises the
path integral by regularising the trace over non-physical states in each ghost
sector. The results are applied to the quantization of a system which has a
Gribov problem, using a non-standard form of the gauge-fixing fermion.Comment: 14 page
- …
