34 research outputs found

    Immunohistochemistry for hepatitis E virus capsid protein cross-reacts with cytomegalovirus-infected cells: a potential diagnostic pitfall

    Full text link
    Immunohistochemistry for hepatitis E virus (HEV) ORF2 (capsid) protein is a powerful tool for tissue-based diagnosis of hepatitis E, particularly useful in evaluating abnormal liver values in immunocompromised patients. We report here a previously unobserved reactivity of the HEV ORF2 antibody to human cytomegalovirus (CMV) proteins and contrast the staining patterns encountered in HEV and CMV infection, respectively. As part of a routine diagnostic work-up, the liver biopsy of an immunocompromised patient with elevated liver values was examined histologically for infection with viruses including CMV and HEV. Cytopathic changes were found, suggestive of CMV infection, which was confirmed by immunohistochemistry. Surprisingly, reactivity of a portion of CMV-infected cells with a mouse monoclonal antibody (clone 1E6) against HEV ORF2 protein was also detected. This observation prompted a screening of 22 further specimens (including liver, gastrointestinal, lung, brain and placental biopsies) with confirmed CMV infection/reactivation. Immunoreactivity of CMV-infected cells with HEV ORF2 antibody was observed in 18 of 23 specimens. While the HEV ORF2 antibody showed cytoplasmic, nuclear and canalicular positivity in hepatitis E cases, positivity in CMV-infected cells was limited to the nucleus. In conclusion, the HEV ORF2 antibody (clone 1E6) shows unexpected immunoreactivity against CMV proteins. In contrast to the hepatitis E staining pattern with cytoplasmic, nuclear and occasional canalicular positivity, reactivity in CMV-infected cells is restricted to the nucleus. Awareness of this cross-reactivity and knowledge of the differences in staining patterns will prevent pathologists from misinterpreting positive HEV ORF2 immunohistochemistry in liver specimens

    Inborn errors of type I interferon immunity in patients with symptomatic acute hepatitis E

    Get PDF
    BACKGROUND AND AIMS: The clinical spectrum of human infection by HEV ranges from asymptomatic to severe acute hepatitis. Furthermore, HEV can cause diverse neurological manifestations, especially Parsonage-Turner syndrome. Here, we used a large-scale human genomic approach to search for genetic determinants of severe clinical presentations of HEV infection. APPROACH AND RESULTS: We performed whole genome sequencing in 3 groups of study participants with PCR-proven acute HEV infection: (1) 24 patients with symptomatic acute hepatitis E; (2) 12 patients with HEV-associated Parsonage-Turner syndrome; and (3) 16 asymptomatic blood donors (controls). For variant calling and annotation, we used GATK4 best practices followed by Variant Effect Predictor (VEP) and Annovar. For variant classification, we implemented the ACMG/AMP Bayesian classification framework in R. Variants with a probability of pathogenicity >0.9 were considered damaging. We used all genes with at least 1 damaging variant as input for pathway enrichment analyses. We observed a significant enrichment of type I interferon response pathways in the symptomatic hepatitis group: 10 out of 24 patients carried a damaging variant in one of 9 genes encoding either intracellular viral sensors (IFIH1, DDX58, TLR3, POLR3B, POLR3C) or other molecules involved in type I interferon response [interferon regulatory factor 7 (IRF7), MYD88, OAS3, GAPDH]. We did not find any enriched pathway in the Parsonage-Turner syndrome group or in the controls. CONCLUSIONS: Our results highlight the essential role of type I interferon in preventing symptomatic acute hepatitis E

    Mécanismes moléculaires déclenchés par la Bone Morphogenetic Protein-2 dans les chondrocytes (identification d'un gène impliqué dans la chondrogenèse et le développement précoce)

    No full text
    Le cartilage est principalement composé de collagène de type II sécrété par les chondrocytes. Nous avons montré que l'épissage alternatif de son gène Col2a1 était régulé de manière opposée par la BMP-2 et le TGF- 1 dans des chondrocytes embryonnaires de souris cultivés sur plastique. Par ailleurs, le traitement de chondrocytes à la BMP-2 nous a conduit à identifier un gène par RT-PCR différentielle, Bat (BMP-2 activated transcript), dont l'expression est stimulée par ce facteur de croissance. L'expression de ce gène favorise le phénotype des chondrocytes en culture, mais bloque leur hypertrophie. En outre, nous avons montré que la protéine Bat, très conservée au cours de l'évolution, joue un rôle dans la mise en place de l'axe dorso-ventral au cours du développement embryonnaire chez le poisson-zèbre, Danio rerio. Ce travail aura mis en évidence deux implications de la protéine Bat : dans la chondrogenèse et dans le développement précoceLYON1-BU.Sciences (692662101) / SudocSudocFranceF

    Amphipathic α-Helix AH2 Is a Major Determinant for the Oligomerization of Hepatitis C Virus Nonstructural Protein 4B▿ †

    No full text
    Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. It induces a specific membrane rearrangement, designated membranous web, that serves as a scaffold for the HCV replication complex. However, the mechanisms underlying membranous web formation are poorly understood. Based on fluorescence resonance energy transfer (FRET) and confirmatory coimmunoprecipitation analyses, we provide evidence for an oligomerization of NS4B in the membrane environment of intact cells. Several conserved determinants were found to be involved in NS4B oligomerization, through homotypic and heterotypic interactions. N-terminal amphipathic α-helix AH2, comprising amino acids 42 to 66, was identified as a major determinant for NS4B oligomerization. Mutations that affected the oligomerization of NS4B disrupted membranous web formation and HCV RNA replication, implying that oligomerization of NS4B is required for the creation of a functional replication complex. These findings enhance our understanding of the functional architecture of the HCV replication complex and may provide new angles for therapeutic intervention. At the same time, they expand the list of positive-strand RNA virus replicase components acting as oligomers

    An Amphipathic α-Helix at the C Terminus of Hepatitis C Virus Nonstructural Protein 4B Mediates Membrane Association ▿ †

    No full text
    Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has been only poorly characterized to date. It is believed to comprise a cytosolic N-terminal part, a central part harboring four transmembrane passages, and a cytosolic C-terminal part. Here, we describe an amphipathic α-helix at the C terminus of NS4B (amino acid residues 229 to 253) that mediates membrane association and is involved in the formation of a functional HCV replication complex

    Aminoterminal amphipathic α-helix AH1 of hepatitis C virus nonstructural protein 4B possesses a dual role in RNA replication and virus production.

    No full text
    Affiliations ECOFECTInternational audienceNonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B

    Hepatitis E Virus RNA‐Dependent RNA Polymerase is Involved in RNA Replication and Infectious Particle Production

    Get PDF
    International audienceBackground and Aims: Hepatitis E virus (HEV) is one of the most common causes of acute hepatitis worldwide. Its positive-strand RNA genome encodes three open reading frames (ORF). ORF1 is translated into a large protein composed of multiple domains and known as the viral replicase. The RNA-dependent RNA polymerase (RdRp) domain is responsible for the synthesis of viral RNA.Approach and Results: Here, we identified a highly conserved α-helix located in the RdRp thumb subdomain. Nuclear magnetic resonance demonstrated an amphipathic α-helix extending from amino acids 1628 to 1644 of the ORF1 protein. Functional analyses revealed a dual role of this helix in HEV RNA replication and virus production, including assembly and release. Mutations on the hydrophobic side of the amphipathic α-helix impaired RNA replication and resulted in the selection of a second-site compensatory change in the RdRp palm subdomain. Other mutations enhanced RNA replication but impaired virus assembly and/or release.Conclusions: Structure-function analyses identified a conserved amphipathic α-helix in the thumb subdomain of the HEV RdRp with a dual role in viral RNA replication and infectious particle production. This study provides structural insights into a key segment of the ORF1 protein and describes the successful use of reverse genetics in HEV, revealing functional interactions between the RdRp thumb and palm subdomains. On a broader scale, it demonstrates that the HEV replicase, similar to those of other positive-strand RNA viruses, is also involved in virus productio

    Aminoterminal amphipathic α-helix AH1 of hepatitis C virus nonstructural protein 4B possesses a dual role in RNA replication and virus production.

    Get PDF
    Affiliations ECOFECTInternational audienceNonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B

    Reply

    No full text
    status: publishe
    corecore