8 research outputs found

    Randomized Clinical Trial of High-Dose Rifampicin With or Without Levofloxacin Versus Standard of Care for Pediatric Tuberculous Meningitis: The TBM-KIDS Trial

    Get PDF
    Background. Pediatric tuberculous meningitis (TBM) commonly causes death or disability. In adults, high-dose rifampicin may reduce mortality. The role of fluoroquinolones remains unclear. There have been no antimicrobial treatment trials for pediatric TBM. Methods. TBM-KIDS was a phase 2 open-label randomized trial among children with TBM in India and Malawi. Participants received isoniazid and pyrazinamide plus: (i) high-dose rifampicin (30 mg/kg) and ethambutol (R30HZE, arm 1); (ii) high-dose rifampicin and levofloxacin (R30HZL, arm 2); or (iii) standard-dose rifampicin and ethambutol (R15HZE, arm 3) for 8 weeks, followed by 10 months of standard treatment. Functional and neurocognitive outcomes were measured longitudinally using Modified Rankin Scale (MRS) and Mullen Scales of Early Learning (MSEL). Results. Of 2487 children prescreened, 79 were screened and 37 enrolled. Median age was 72 months; 49%, 43%, and 8% had stage I, II, and III disease, respectively. Grade 3 or higher adverse events occurred in 58%, 55%, and 36% of children in arms 1, 2, and 3, with 1 death (arm 1) and 6 early treatment discontinuations (4 in arm 1, 1 each in arms 2 and 3). By week 8, all children recovered to MRS score of 0 or 1. Average MSEL scores were significantly better in arm 1 than arm 3 in fine motor, receptive language, and expressive language domains (P < .01). Conclusions. In a pediatric TBM trial, functional outcomes were excellent overall. The trend toward higher frequency of adverse events but better neurocognitive outcomes in children receiving high-dose rifampicin requires confirmation in a larger trial. Clinical Trials Registration. NCT02958709

    Pulsed laser deposited Si on multilayer graphene as anode material for lithium ion batteries

    No full text
    Pulsed laser deposition and chemical vapor deposition were used to deposit very thin silicon on multilayer graphene (MLG) on a nickel foam substrate for application as an anode material for lithium ion batteries. The as-grown material was directly fabricated into an anode without a binder, and tested in a half-cell configuration. Even under stressful voltage limits that accelerate degradation, the Si-MLG films displayed higher stability than Si-only electrodes. Post-cycling images of the anodes reveal the differences between the two material systems and emphasize the role of the graphene layers in improving adhesion and electrochemical stability of the Si

    Impacts of Ta Buffer Layer and Cu-Ge-Te Composition on the Reliability of GeSe-Based CBRAM

    No full text
    status: publishe

    Key material parameters driving CBRAM device performances

    No full text
    This study is focused on Conductive Bridging Random Access Memory (CBRAM) devices based on chalcogenide electrolyte and Cu-supply materials, and aims at identifying the key material parameters controlling memory properties. The CBRAM devices investigated are integrated on CMOS select transistors, and are constituted by either Ge-Se or Ge-Te electrolyte layers of various compositions combined with a Cu2GeTe3 active chalcogenide electrode. By means of extensive physical and electrical characterization, we show for a given electrolyte system that slower write is obtained for a denser electrolyte layer, which is directly correlated with a lower atomic percentage of the chalcogen element in the layer. We also evidence that the use of Ge-Se electrolyte results in larger write energy (voltage and time), however with improved state retention properties than for Ge-Te electrolyte materials. We associate these results with the stronger chemical bonding of Cu with Se, resulting both in a stabilized Cu filament and a slower Cu cation motion. More robust processing thermal stability is also observed for Ge-Se compared to Ge-Te compounds, allowing more flexibility in the integration flow design.status: publishe
    corecore