15 research outputs found

    Multiscale Investigation of Random Heterogenous Media in Materials and Earth Sciences

    Get PDF
    This dissertation is concerned with three major areas pertaining to the characterization and analysis of heterogeneous materials. The first is focused on the modeling of heterogeneous materials with random microstructure and understanding their thermomechanical properties as well as developing a methodology for the multiscale thermoelastic analysis of random heterogeneous materials. Realistic random microstructures are generated for computational analyses using random morphology description functions. The simulated microstructures closely resemble actual micrographs of random heterogeneous materials. The simulated random microstructures are characterized using statistical techniques and their homogenized material properties computed using the asymptotic expansion homogenization method. The failure response of random media is investigated via a direct micromechanical failure analysis which utilizes stresses at the microstructural level coupled with appropriate phase material failure models to generate initial failure envelopes. The homogenized material properties and failure envelopes are employed to perform accurate coupled macroscale and microscale analyses of random heterogeneous material components. The second area addressed in this dissertation involves the transient multiscale analysis of two-phase functionally graded materials within the framework of linearized thermoelasticity. The two-phase material microstructures, which are created using a morphology description function, have smoothly varying microstructure morphologies that depend on the volume fractions of the constituent phases. The multiscale problem is analyzed using asymptotic expansion homogenization coupled with the finite element method. Model problems are studied to illustrate the versatility of the multiscale analysis procedure which incorporates a direct micromechanical failure analysis to accurately compute the factors of safety for functionally graded components. The last area of this dissertation is concerned with determining the role of heterogeneous rock fabric features in quartz/muscovite rich rocks on seismic wave speed anisotropy. The bulk elastic properties and corresponding wave velocities are calculated for synthetic heterogeneous rock microstructures with varying material and geometric features to investigate their influence on seismic wave speed anisotropy. The asymptotic expansion homogenization method is employed to calculate precise bulk stiffness tensors for representative rock volumes and the wave speed velocities are obtained from the Christoffel equation. The obtained results are also used to assess the performance of analytic homogenization schemes currently used in the geophysics community

    Integrated Analytical-Computational Analysis of Microstructural Influences on Seismic Anisotropy

    Get PDF
    The magnitudes, orientations and spatial distributions of elastic anisotropy in Earth\u27s crust and mantle carry valuable information about gradients in thermal, mechanical and kinematic parameters arising from mantle convection, mantle-crust coupling and tectonic plate interactions. Relating seismic signals to deformation regimes requires knowledge of the elastic signatures (bulk stiffnesses) of different microstructures that characterize specific deformation environments, but the influence of microstructural heterogeneity on bulk stiffness has not been comprehensively evaluated. The objectives of this project are to: (1) scale up a preliminary method to determine the bulk stiffness of rocks using integrated analytical (electron backscatter diffraction) and computational (asymptotic expansion homogenization) approaches that fully account for the grain-scale elastic interactions among the different minerals in the sample; (2) apply this integrated framework to investigate the effect on elastic anisotropy of several common crustal microstructures; (3) integrate time-dependent microstructure modeling with bulk stiffness calculations to investigate the effects of strain- and process-dependent microstructure evolution on elastic anisotropy in mantle rocks; and (4) disseminate open-source software for the calculation of bulk stiffnesses from electron backscatter diffraction data and creation of synthetic (computer generated) microstructures that can be used in sensitivity analyses among other applications. Because commonly used methods, such as the Voigt, Reuss and Voigt-Reuss-Hill averages, for calculating bulk rock stiffnesses do not account for elastic interactions among the constituent minerals, they exhibit marked, non-systematic differences from stiffnesses obtained using asymptotic expansion homogenization. These objectives are important because the results would substantially improve understanding of the nature of seismic anisotropy in the Earth\u27s crust, which is composed of rocks dominated by low symmetry minerals with complex structures. Traditional methods for performing these calculations do not easily incorporate these effects. This project will develop an elegant, easily-implemented alternative method for anisotropic materials. The scientific results and computational tools that result from this project will have global application across a number of solid Earth and engineering disciplines. Open-source codes developed in this project will made available through existing open-source ELLE platform. Classroom exercises developed for Earth Science and Mechanical Engineering courses that employ this software will be make available to the community, probably through the Science Education Resource Center website at Carleton College

    Date: MULTISCALE INVESTIGATION OF RANDOM HETEROGENEOUS MEDIA IN MATERIALS AND EARTH SCIENCES

    No full text
    In presenting this thesis in partial fulfillment of the requirements for an advanced degree at The University of Maine, I agree that the Library shall make it freely available for inspection. I further agree that permission for “fair use ” copying of this thesis for scholarly purposes may be granted by the Librarian. It is understood that any copying or publication of this thesis for financial gain shall not be allowed without my written permission. Signature

    Model Test Correlation Study for a Floating Wind Turbine on a Tension Leg Platform

    No full text
    The challenges related to floating wind turbine analysis simulations relate to the modeling of the flexible turbine tower dynamics, the rotor dynamics, and the floating platform dynamics. In order to simulate the interactions between the wind turbine and the floating platform, two existing numerical codes, FAST [1], developed by the National Renewable Energy Laboratory (NREL), and MLTSIM, a Technip proprietar

    Model Tests for a Floating Windturbine on Three Different Floaters

    No full text
    Wind energy is a promising alternate energy resource. However, the on-land wind farms are limited by space, noise, and visual pollution, and therefore many countries build wind farms near shore. Up to now, most of offshore wind farms have been built in relatively shallow water (less than 30m) with fixed tower type wind turbines. Recently, several countries plan to move wind farms to deep water offshore locations to find stronger and steadier wind fields as compared to near shore locations. For the wind farms in deeper water, floating platforms have been proposed to support the wind turbine. The model tests described in this paper were performed at MARIN (Maritime Research Institute Netherlands) with a model set-up corresponding to a 1:50 Froude scaling. The wind turbine was a scaled model of the National Renewable Energy Lab (NREL) 5MW, horizontal axis reference wind turbine supported by three different generic floating platforms: a spar, a semi-submersible and a tension-leg platform (TLP). The wave environment used in the tests is representative of the offshore in the state of Maine. In order to capture coupling between the floating platform and the wind turbine, the 1st bending mode of the turbine tower was also modeled. The main purpose of the model tests was to generate data on coupled motions and loads between the three floating platforms and the same wind turbine for the operational, design, and survival seas states. The data are to be used for calibration and improvement of existing design analysis and performance numerical codes. An additional objective of the model tests was to establish advantages and disadvantages among the three floating platform concepts on the basis of test data. The paper gives details of the scaled model wind turbine and floating platforms, the set-up configurations, and the instrumentation to measure motions, accelerations and loads as well as wind turbine rpm, torque and thrust for the three floating wind turbines. The data and data analysis results are the subject of another paper in this conference [1]

    Importance of Second-Order Difference-Frequency Wave-Diffraction Forces in the Validation of a FAST Semi-Submersible Floating Wind Turbine Model

    No full text
    To better access the abundant offshore wind resource, efforts are being made across the world to develop and improve floating offshore wind turbine technologies. A critical aspect of creating reliable, mature floating wind turbine technology is the development, verification, and validation of efficient computer-aided-engineering (CAE) tools. The National Renewable Energy Laboratory (NREL) has created FAST, a comprehensive, coupled analysis CAE tool for floating wind turbines, which has been verified and utilized in numerous floating wind turbine studies. Several efforts are underway to validate the floating platform functionality of FAST to complement its already validated aerodynamic and structural simulation capabilities. The research employs the 1/50th-scale DeepCwind wind/wave basin model test dataset, which wa

    Design and Testing of Scale Model Wind Turbines for Use in Wind/Wave Basin Model Tests of Floating Offshore Wind Turbines

    No full text
    Model basin testing is a standard practice in the design process for offshore floating structures and has recently been applied to floating offshore wind turbines. 1/50 th scale model tests performed by the DeepCwind Consortium at Maritime Research Institute Netherlands (MARIN) in 2011 on various platform types were able to capture the global dynamic behavior of commercial scale model floating wind turbine systems; however, due to the severe mismatch in Reynolds number between full scale and model scale, the strictly Froude-scaled, geometrically similar wind turbine underperformed greatly. This required significant modification of test wind speeds to match key wind turbine aerodynamic loads, such a

    Model test correlation study for a floating wind turbine on a tension leg platform

    No full text
    ABSTRACT The challenges related to floating wind turbine analysis simulations relate to the modeling of the flexible turbine tower dynamics, the rotor dynamics, and the floating platform dynamics. In order to simulate the interactions between the wind turbine and the floating platform, two existing numerical codes, FAST [1], developed by the National Renewable Energy Laboratory (NREL), and MLTSIM, a Technip proprietary software, were integrated into one code, MLTSIM-FAST. In this integrated program, the turbine tower and rotor dynamics are simulated by the subroutines of FAST, and the hydrodynamic loads and mooring system dynamics are simulated by the subroutines of MLTSIM. This paper presents validation of the MLTSIM-FAST code on the basis of data from the DeepCwind floating wind turbine model tests [2] and [3]. For the present MLTSIM-FAST validation study, the TLP floating wind turbine, which showed the strongest interactions between the wind turbine and the floating platform among the three platforms TLP, SEMI, and SPAR tested, is selected. The validation results are given on the basis of full scale measured and simulated motions and loads
    corecore