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This dissertation is concerned with three major areas pertaining to the characteriza-

tion and analysis of heterogeneous materials. The first is focused on the modeling of

heterogeneous materials with random microstructure and understanding their ther-

momechanical properties as well as developing a methodology for the multiscale ther-

moelastic analysis of random heterogeneous materials. Realistic random microstruc-

tures are generated for computational analyses using random morphology description

functions. The simulated microstructures closely resemble actual micrographs of ran-

dom heterogeneous materials. The simulated random microstructures are character-

ized using statistical techniques and their homogenized material properties computed

using the asymptotic expansion homogenization method. The failure response of ran-

dom media is investigated via a direct micromechanical failure analysis which utilizes

stresses at the microstructural level coupled with appropriate phase material failure

models to generate initial failure envelopes. The homogenized material properties and

failure envelopes are employed to perform accurate coupled macroscale and microscale

analyses of random heterogeneous material components.



The second area addressed in this dissertation involves the transient multiscale analy-

sis of two-phase functionally graded materials within the framework of linearized

thermoelasticity. The two-phase material microstructures, which are created using a

morphology description function, have smoothly varying microstructure morphologies

that depend on the volume fractions of the constituent phases. The multiscale prob-

lem is analyzed using asymptotic expansion homogenization coupled with the finite

element method. Model problems are studied to illustrate the versatility of the multi-

scale analysis procedure which incorporates a direct micromechanical failure analysis

to accurately compute the factors of safety for functionally graded components.

The last area of this dissertation is concerned with determining the role of hetero-

geneous rock fabric features in quartz/muscovite rich rocks on seismic wave speed

anisotropy. The bulk elastic properties and corresponding wave velocities are cal-

culated for synthetic heterogeneous rock microstructures with varying material and

geometric features to investigate their influence on seismic wave speed anisotropy.

The asymptotic expansion homogenization method is employed to calculate precise

bulk stiffness tensors for representative rock volumes and the wave speed velocities are

obtained from the Christoffel equation. The obtained results are also used to assess

the performance of analytic homogenization schemes currently used in the geophysics

community.
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CHAPTER 1

INTRODUCTION

A overview of the relevant scientific literature pertaining to the areas of interest in

this dissertation is presented in this first chapter. These areas, each involving the

study of heterogeneous materials, include random heterogeneous materials, function-

ally graded materials and seismic wave speed anisotropy. After the background and

literature review is concluded, an overview of the dissertation is presented including

research objectives, research contributions and an outline of the dissertation layout.

1.1 Background and Literature Review

1.1.1 Random Heterogeneous Materials

It is important to understand the response of random heterogeneous materials since

they are widely encountered in engineering applications. Much progress has been made

in recent years in characterizing the properties of random heterogeneous materials

(Torquato, 2002). Prior work on this subject can be broadly classified into three cate-

gories, namely effective medium theories, theoretical bounding methods and computa-

tional simulations. The effective medium theories include the Mori-Tanaka method,

self-consistent scheme and other mean-field models (Mori and Tanaka, 1973; Ben-

veniste, 1987; Hill, 1965). The theoretical bounding methods consist of the Hashin-

Shtrikman lower and upper bounds as well as other higher-order bounds (Hashin and

Rosen, 1964; Hill, 1964; Hashin, 1965; Rosen and Hashin, 1970; Hashin, 1979). Com-

putational models typically utilize finite element or boundary element methods to

investigate the response of a representative volume element of the heterogeneous ma-

terial. The present work, which belongs to the later class of methods, utilizes asymp-

totic expansion homogenization (AEH) in conjunction with the finite element method

to determine the homogenized material properties of random heterogeneous materials
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(Bensoussan et al., 1978; Sanchez-Palencia, 1981/1983; Guedes and Kikuchi, 1990;

Terada et al., 2000).

Computational analyses of random heterogenous materials rely on simulated ran-

dom microstructures or digital images of actual microstructures (Langer et al., 2001).

Several researchers have investigated the response of random heterogeneous materi-

als (e.g. see (Terada et al., 2000; van der Sluis et al., 2000)). A majority of the

studies consider particles of regular geometric shape and size, often spheres, cylin-

ders or ellipses that are randomly distributed in a matrix phase. Torquato and Stell

characterized the statistical properties of microstructures consisting of ensembles of

impenetrable (Torquato and Stell, 1982) and penetrable (Torquato and Stell, 1983)

spheres using the n-point probability functions. Segurado and Llorca (2002) ana-

lyzed the elastic properties of materials comprised of a matrix embedded with non-

overlapping spheres. Gusev et al. (2000) employed a Monte Carlo procedure to

generate periodic models of transversely random fiber packed composites and subse-

quently analyzed there elastic response and compared the result with experimental

values. Grujicic and Zhang (1998) studied slightly more complex geometries with the

Voronoi cell finite element method including randomly sized and oriented elliptical

inclusions embedded in a matrix and also a material comprised of intertwined clusters

of irregular polygons. Leggoe et al. (1998) analyzed the deformation of random metal

matrix composites using two- and three-dimensional regular grids of finite elements.

Cho and Ha (2001) and Mishnaevsky (2005) each analyzed graded microstructures

using regular grids of rectangular and voxel shaped finite elements, respectively. Us-

ing these regular grid morphologies the gross features of a microstructure can be

captured quite well, however the finer microstructure details are not represented ac-

curately. While the microstructures studied provide useful results for certain types

of composite materials, micrographs of heterogeneous materials fabricated through

manufacturing processes such as plasma spraying and powder metallurgy reveal that

2



the particles usually have random shapes and sizes (e.g. see (Kawasaki and Watan-

abe, 1997; Takagi et al., 2003; Jin et al., 2005)). In addition, the morphology of the

microstructure usually depends on the volume fractions of the constituent material

phases. For certain volume fractions, the random heterogeneous material may not

have clearly defined matrix and particulate phases. Instead, the two phases may form

a completely interconnected network. Such materials, which are commonly referred

to as interpenetrating phase composites (IPCs), have important technological appli-

cations (Leßle et al., 1999; Wegner and Gibson, 2000/2001; Aldrich and Fan, 2001;

Feng et al., 2004).

A means of synthetically creating realistic microstructures that mimic the aforemen-

tioned trends is to employ a technique which defines the interface of the two material

phases via a level cut of a random field (Cahn, 1965). Roberts and Teubner (1995)

used Gaussian random fields to create and characterize the transport properties of ran-

dom microstructures. Subsequently, Roberts and Knackstedt (1996) investigated the

conductivity, diffusivity and elastic moduli of Gaussian random field microstructures

through rigorous bounding techniques. To date, however, the thermoelastic material

properties and failure under thermomechanical loads of random heterogeneous mate-

rials of the type used in (Roberts and Teubner, 1995; Roberts and Knackstedt, 1996)

has not been investigated.

1.1.2 Functionally Graded Materials

In order to create the increasingly more complex components and systems that soci-

ety demands, engineers and designers require ever improving advanced materials. In

an effort to meet the ever increasing demands placed on advanced materials, a class

of composite materials known as functionally graded materials (FGMs) (Miyamoto

et al., 1999) have been proposed for certain applications. FGMs are advanced het-

erogeneous materials that possess continuously varying material properties which are

3



tailored to maximize component performance. The smooth variation in material

properties is achieved by carefully altering the volume fraction and microstructural

morphology of the constituent materials, which are chosen based on functional per-

formance requirements, from point to point within the body. The smooth variation

in material properties eliminates the presence of interfaces between discrete materials

often found in typical laminate composites which alleviates plastic deformation and

cracking, especially in high temperature applications (Finot and Suresh, 1996).

In recent years, much research has been performed on the analysis and optimization of

FGMs. Analytic solutions have been presented for a large array of geometries, load-

ings, material combinations and grading architectures (Loy et al., 1999; Cheng and

Batra, 2000; Ueda and Gasik, 2000; Vel and Batra, 2002/2003; Elishakoff and Guédé,

2004). These and several prior studies of functionally graded components have clearly

demonstrated the advantages of functionally graded materials over typical discretely

laminated composite structures, such as, reduced peak stresses within the component

under thermal and mechanical loads. Other studies have focused on optimizing the

volume fraction distribution of the heterogeneous material in one or more dimensions

in an effort to maximize the performance of the functionally graded component under

prescribed loading conditions (Cho and Ha, 2002; Lipton, 2002; Qian and Ching, 2004,

Goupee and Vel, 2006/2007; Vel and Pelletier, 2007). Most of the aforementioned

analytical, numerical and optimization studies utilize simple mean-field homogeniza-

tion techniques to determine the effective material properties of the heterogeneous

material as a function of volume fraction. Examples of such homogenization meth-

ods include the rule of mixtures (Voigt, 1889), modified rule of mixtures (Tamura et

al., 1973), Mori-Tanaka method (Mori and Tanaka, 1973; Benveniste, 1987) and self-

consistent scheme (Hill, 1965). While these types of homogenization schemes allow

the determination of the effective properties of the composite with knowledge of just

the volume fraction and respective constituent properties, they are unable to account

4



for variations in microstructural morphology which can greatly influence the homog-

enized material properties even at a fixed volume fraction. To ensure an accurate

solution or optimization routine, specific information regarding the microstructure

morphology cannot be neglected during the homogenization process. An effective

means of performing this task is by utilizing the AEH method.

The AEH method provides a number of advantages over conventional homogeniza-

tion techniques usually employed in FGM analysis. The AEH method introduces

two length scales in the analysis procedure, one associated with the macroscopic

functionally graded part and the other associated with heterogeneous material mi-

crostructure, i.e. a macroscale and a microscale. By introducing two length scales,

one can effectively analyze sophisticated functionally graded components with com-

plex microstructures, usually with the aid of numerical solution techniques like the

finite element method. The multiscale approach also allows the computation of the

stress state at the microscale, a process which cannot be performed using the effec-

tive medium homogenization methods mentioned previously. With knowledge of the

microstresses, one can apply material phase specific failure criteria to better assess

failure of the heterogeneous material of which the functionally graded component is

comprised. In this work, this process is termed direct micromechanical failure analy-

sis. Prior FGM works, like those of Cho and Choi (2004) and Goupee and Vel (2007),

have at best attempted to incorporate the failure estimate of FGM materials via sim-

plified analytic estimates such as the linear rule of mixtures (Bishop and Hill, 1951) or

the Hashin-Shtrikman lower estimate (Casteñeda and deBotton, 1992). These meth-

ods, which only work for FGMs comprised of two ductile phases, do not account for

microstructural morphology when homogenizing the strength of the resulting FGM

material. And since microstructure features greatly influence FGM material failure,

as will be demonstrated in the results of this work, a more sophisticated and robust

methodology like direct micromechanical failure analysis is required.
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While the AEH method has been applied very sparingly in FGM research, there have

been several studies that make use of the AEH method to analyze heterogeneous

material components. For example, Fish and Wagiman (1992) and Ghosh et al.

(1995) each analyzed a boron/aluminum heterogeneous plate with a centrally located

hole under in-plane tensile forces using two distinct microstructure morphologies.

Fish and Wagiman generated the necessary field approximations with finite elements

while Ghosh et al. used a coupled finite element/Voronoi cell finite element method.

Ghosh et al. (1996) developed a multiscale Voronoi cell finite element model for the

elastic-plastic analysis of porous and composite materials. Takano et al. (2000)

presented a multiscale computational method for the stress analysis of composite

material structures at both the macroscopic and microscopic length scales. Terada

and Kikuchi (2001) developed a class of algorithms for the multiscale analyses of

heterogeneous media and demonstrated their approach on two multiscale problems,

a hydrostatically loaded dam and a beam in flexure. Only recently have multiscale

methods been utilized for functionally graded materials where the volume fraction

and microstructure morphology change from point to point within the macroscopic

body. Yin et al. (2005) created a multiscale framework for analyzing the elastic

deformation of functionally graded composites. Analyzing bamboo as a functionally

graded material, Silva et al. (2006) used a multiscale approach to model sections of

bamboo under various loading conditions.

1.1.3 Seismic Wave Speed Anisotropy

Most individual components that comprise Earth materials possess some level of ma-

terial anisotropy, and when they are structured in orderly patterns termed rock fab-

rics, the resulting bulk rock can exhibit a wide range of possible effective anisotropic

elastic stiffnesses. In many cases, the elastic anisotropy of rock fabrics gives rise to a

variation in the primary (P ) and secondary (S) seismic wave speeds as the propaga-

tion direction is altered. This phenomena, called seismic anisotropy, can be utilized
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by geophysicists to gain information on the mineralogy and structure of deeper parts

of the earth by conducting seismic experiments and relating the obtained seismic

anisotropy measures to particular rock fabric formations. This is extremely useful

since rock fabric formations reflect the overall deformation of the Earth material and

can be used not only to gain information on the mineralogy and structure of deeper

parts of the Earth, but also to better understand the tectonic processes that have

operated during geologic history.

To date, a number of detailed seismic studies have provided valuable information on

the distribution of wave propagation velocities at deeper levels of the earth (Chris-

tensen, 1985; Christensen and Mooney, 1995; Mooney, 2007). Measurements of

S-wave splitting, an important seismic anisotropy measure, are usually attributed to

anisotropy in the mantle. For example, the alignment of the elastically anisotropic

mineral olivine into a crystal lattice preferred orientation is directly linked to the

kinematics of plastic flow in the mantle and to seismic anisotropy (Mainprice and

Nicolas, 1989; Savage, 1999). In the crust, material anisotropy is also able to affect

the S-wave splitting values caused by mantle structures. In order to do so, the de-

gree of crustal anisotropy must be significant and appropriately oriented (Okaya et

al., 1995; Godfrey et al., 2000). An example is the Alpine Fault in the South Island

of New Zealand. The schist terranes in this location, schist being a particular type

of rock fabric, are of large extent and thickness (approximately 10 to 20 km) and

are steeply dipping, contributing to potentially 45% of the observed S-wave splitting

(Godfrey et al., 2000). While other causes for crustal material anisotropy include the

presence of aligned fractures or cracks in the upper crust and the layering of isotropic

material exist, it is the effect of anisotropic elastic properties of single crystals coupled

with the rock fabric morphologies they create which are the focus of the work here.

With regard to experimental work in this area, there exist a number of laboratory ve-

locity measurements for rock types that are believed to be important constituents of
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Earth’s crust and upper mantle (e.g. see (Birch, 1960/1961; Christensen, 1965/1966;

Simmons, 1964)). These petrophysical data are determined by directing high fre-

quency waves at an oriented rock sample. This sample is oriented based on the folia-

tion defined by phyllosilicates in the rock, so fabric elements such as a lattice preferred

orientation in the matrix crystals are not accounted for. By using five independent P

and S-wave velocities measurements and assuming that the bulk material possesses

hexagonal symmetry, the elastic stiffnesses can be calculated (Cristescu, 1989; Okaya

and McEvilly, 2003). For this calculation, the measurements diagonal to the foliation

direction are crucial, but difficult to perform. Therefore, these measurements are of-

ten inferred from the measurements obtained from experiments conducted parallel

and perpendicular to the foliation plane. Okaya and Christensen (2002) have shown

that this diagonal measurement profoundly influences S-wave speed behavior.

For materials with symmetries more complicated than the hexagonal variety, even

more measurements are required to characterize their wave speed versus propagation

direction response and thus, are used rarely for seismic anisotropy studies. More

recently the use of electron backscatter diffraction data to calculate bulk properties

of polycrystallographic rocks has gained in popularity. Based on the crystallographic

orientations and constituent volume fractions derived by this method, a bulk stiffness

tensor for the rock can be calculated and used to compute the anticipated seismic

response of the sample. A common method used by the geophysical community

to calculate the homogenized stiffness tensor is via a program written by Mainprice

(1990). This program uses the elastic constants, density and volume fraction of each

mineral to homogenize the elastic properties using the Voigt (1928) upper bound

or arithmetic mean (Hill, 1952), which in turn can be used to compute the seismic

wave speed behavior. Other commonly used homogenization techniques employed

for these purpose include the Reuss (1929) lower bound and the geometric mean

(Matthies and Humbert, 1993). The downside of using these analytical bounds
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and estimates is that they do not consider grain shapes or the elastic interactions of

these grains. The end result is that it is difficult to assess if the particular choice

of homogenization is performing well or not, since for a given set of phase volume

fractions and orientations, alterations in the grain sizes, geometries and distribution

can greatly alter the true bulk stiffness. Therefore, even though computationally

intensive homogenization schemes have been deemed tedious and impractical for most

in the geophysical community (e.g. see( Ji, 2004)), accurately studying the effect of

rock fabric characteristics on seismic anisotropy requires a rigorous homogenization

method like AEH.

1.2 Overview of Thesis

1.2.1 Research Objectives

The first objective of the present dissertation is to develop a methodology for creat-

ing morphologically realistic heterogeneous two-phase random microstructures over

the entire volume fraction range, and subsequently, analyze their statistical and ho-

mogenized thermoelastic material properties in an effort to extract valuable insight

into the behavior of realistic random materials. To that end, the AEH method is

used in conjunction with multiscale analysis to obtain the temperature and stresses

at the microscopic and macroscopic levels. In addition, failure envelopes are pre-

sented for metal/ceramic and metal/metal heterogeneous materials through direct

micromechanical failure analysis. It should be noted that the present methodology

is applicable to heterogeneous bodies with spatially varying material composition.

Functionally graded materials are a good example of heterogeneous materials that

have spatially varying volume fractions and microstructure. As alluded to previously,

FGMs are appealing in certain applications since they permit tailoring of material

composition so as to derive maximum benefits from their inhomogeneity (Miyamoto

et al., 1999; Cho and Ha, 2002; Pelletier and Vel, 2006; Goupee and Vel, 2006/2007).
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To address the first objective of the dissertation, a methodology for the simulation

of morphologically realistic heterogeneous microstructures using random morphology

description functions (RMDFs) is presented. In this approach, the interface between

two material phases is defined through a level cut of a random field (Cahn, 1965).

Roberts and Teubner (1995) used level cuts of Gaussian random fields to generate

realistic random microstructures of this type and analyzed their effective conductivity

for a variety of volume fractions. Roberts and Knackstedt (1996) investigated the con-

ductivity, diffusivity and elastic moduli of Gaussian random field microstructures by

deriving the microstructure statistical correlation functions and using them to eval-

uate rigorous bounds on each of the desired properties. To date, as was mentioned

previously, the thermoelastic material properties and multiscale analysis of random

heterogeneous materials of the type used in (Roberts and Teubner, 1995; Roberts

and Knackstedt, 1996) has not been investigated. Accordingly, the homogenized

thermomechanical properties of the two-phase RMDF created random microstruc-

tures are investigated in the present work. The simulated random microstructures

visually compare very well with actual micrographs created via common two-phase

material manufacturing techniques including plasma spraying (e.g. see (Kawasaki

and Watanabe, 1997)) and powder processing (e.g. see (Aldrich et al., 2000; Takagi

et al., 2003; Jin et al., 2005)). More specifically, when the volume fraction of one

phase is much smaller than the other, the resulting microstructure consists of parti-

cles of random shape and size scattered in a matrix phase. When the volume fractions

are comparable, the resulting microstructure resembles an IPC with interconnected

morphology. The characteristic size of the microstructural features can be controlled

by varying the number of Gaussian source functions used to generate the morphology

description function. The simulated RMDF microstructures are characterized using

two-point probability functions and their effective thermomechanical material prop-

erties are determined using the AEH method (Torquato, 2002; Guedes and Kikuchi,
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1990). The homogenized material properties for different material combinations and

volume fractions are compared with the self-consistent estimate, Hashin-Shtrikman

bounds and experimental results.

In addition to characterizing the thermoelastic material properties of random het-

erogeneous materials, this dissertation aims to address the fundamental problem of

determining the local heat flux, strains, stresses and failure at the microstructural

level for heterogeneous solid bodies that are subjected to applied thermal and me-

chanical loads. To that end, a multiscale analysis of random heterogeneous materials

within the context of linear thermoelasticity is performed. The macroscopic heat con-

duction and thermoelastic analyses are performed using the finite element method.

The corresponding heat flux and stresses at the microscale are evaluated using the

interscale transfer operators. The coupled micro-macro analysis technique makes it

possible to analyze the failure of random heterogeneous materials. For a prescribed

macroscopic stress state, a direct micromechanical failure analysis is performed which

entails determining the corresponding microstresses for the applied macroscopic stress

state and then using appropriate material failure criteria at the microscale in order

to determine the factor of safety of the material. Using direct micromechanical fail-

ure analysis, initial failure envelopes in the macroscopic principle stress domain are

generated by varying the stress states at the macroscopic level and averaging the re-

sults over a sufficiently large ensemble of distinct random microstructures. The initial

failure envelopes thus generated are useful in assessing the strength of heterogeneous

components when precise information regarding the microstructure is lacking, which

is often the case in practical applications. In addition, once the initial failure envelopes

have been created for a particular random heterogeneous material combination, the

envelopes can be used for analyzing components comprised of the same material with-

out the need of a computationally expensive and time-consuming multiscale analysis

for each new problem.
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The multiscale analysis framework is illustrated through two model problems. The

random heterogeneous components considered in both model problems are assumed

to be functionally graded to demonstrate the applicability of the method to heteroge-

neous bodies with spatially varying material composition. In the first model problem,

a simply supported aluminum/alumina (Al/Al2O3) functionally graded beam is in-

vestigated. The beam, which is graded in the thickness direction, is subjected to

a distributed load on its top surface. The homogenized material properties at each

location, which are necessary for the macroscopic analysis, are obtained using the

AEH method. The factor of safety is determined from the macroscopic stresses in

conjunction with the failure envelopes for Al/Al2O3 random heterogeneous materials.

A detailed investigation of failure at the microstructural level is also performed for

representative random microstructures at the critical location. In the second model

problem, a tungsten/copper (W/Cu) functionally graded component is subjected to

an intense heat flux on a portion of its boundary. A multiscale heat conduction and

thermoelastic analysis is performed and the temperature, stresses and factor of safety

are obtained at the macroscopic and microscopic levels.

The second object of this dissertation is to study the transient thermoelastic response

of functionally graded materials using a multiscale approach. More specifically, two-

phase functionally graded materials with varying microstructure morphologies will

be analyzed using the AEH and finite element methods. The accuracy of the pro-

posed multiscale approach is verified using two validation problems, these being the

multiscale problem studied in (Fish and Wagiman, 1992; Ghosh et al., 1995) and

an exact transient solution for a functionally graded plate (Vel and Batra, 2003).

Subsequently, results are presented for two model problems to demonstrate the po-

tential of the multiscale approach as applied to functionally graded materials. The

microstructure morphologies for the model problems are created for the entire range

of volume fractions using a morphology description function (MDF) (Cahn, 1965;
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de Ruiter and van Keulen, 2004; Cao and Liu, 2006), a concept very similar to

the RMDF mentioned previously. The two model problems, the first being a cop-

per/tungsten (W/Cu) specimen subject to a time-varying heat flux and the second a

thermally loaded titanium/zirconium (Ti/ZrO2) turbine blade, use the results from

the multiscale analysis to perform a direct micromechanical failure analysis of the

components. The results will demonstrate that a multiscale approach is necessary if

one wishes to accurately analyze a functionally graded component with the intent of

properly assessing component failure.

The final objective of this dissertation is to better characterize the influence of key

rock fabric features on seismic anisotropy. These microscale characteristics include

the phase volume fractions, the crystallographic shape and orientations as well as the

spatial arrangements of the constituent crystals. To ascertain the influence of these

key features, a systematic study of parametrized synthetic rock fabric microstructures

consisting of quartz and muscovite grains will be analyzed using the AEH method and

the resulting wave speed velocities as a function of propagation direction determined

via the solution of the Christoffel equation (1877). The synthetic microstructures

will feature variable muscovite volume fraction, muscovite inclusion orientation and

quartz grain material orientation. An analysis of the generated wave speed data

will be performed by computing and comparing key seismic wave speed anisotropy

parameters. These will include the spread in the magnitudes of the P and S-wave

speeds as propagation direction is altered, the relationship of the P -wave speed with

a propagation direction diagonal to the foliation plane relative to the velocities per-

pendicular and parallel to the foliation plane as well as the spread in the two S-wave

speed velocities as propagation direction is varied.
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1.2.2 Research Contributions

The significance of this dissertation is in the use of rigorous multiscale methods to

explore and better understand heterogeneous materials, such as advanced composite

materials and polycrystalline rocks. The proposed research activities will first focus

on the characterization and multiscale analysis of random heterogeneous engineering

materials under combined thermal and mechanical loads. An additional, and related,

area of research includes the utilization of multiscale methods for accurate failure

analysis during the transient of thermally loaded functionally graded materials. The

final area of research aims to identify the influence of key heterogeneous rock fabric

morphological features on seismic wave speed anisotropy. The specific contributions

of this thesis are as follows:

1. The homogenized thermoelastic material properties of two-phase random het-

erogeneous materials are characterized by creating synthetic microstructures via

the RMDF method and analyzing the microstructures with the AEH method.

The RMDF microstructures closely resemble micrographs of actual random het-

erogeneous materials and exhibit the desired morphological changes over the

entire range of volume fractions. More specifically, the created microstructures

resemble particles embedded in a matrix phase when the phase volume fractions

are disparate and resemble an IPC when the phase volume fractions are similar.

Using the combined RMDF and AEH methodology, the accuracy of commonly

used analytic homogenization schemes for estimating the effective properties of

random heterogeneous materials is assessed.

2. Using the RMDF microstructures and direct micromechanical failure analysis

afforded by the AEH method, the failure response of random heterogeneous

materials to both mechanical and thermal loads is characterized. More specif-

ically, initial failure envelopes are created which not only give insight into the
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dependence of random material strength on varying combined stress states and

temperature increases, but also facilitate more an efficient failure analysis of

heterogeneous material components. With the initial failure envelopes cre-

ated, a novel, streamlined multiscale approach which employs the information

provided by the failure envelopes is demonstrated on two model problems.

3. A multiscale methodology is presented for the accurate transient thermoelastic

analysis of FGM components which accounts for the spatial variation of mi-

crostructural morphology. The factors of safety are computed at each time

step using the direct micromechanical failure analysis approach, which entails

utilizing microscale stress quantities in conjunction with phase specific failure

criteria. The methodology is demonstrated on two model problems and in-

sight is garnered with regard to the influence of the macroscopic field variables

and microstructural morphology on the factor of safety of a transient thermally

loaded FGM component.

4. The role of rock fabric characteristics on seismic wave speed anisotropy is in-

vestigated using parametrized synthetic quartz/muscovite microstructures cou-

pled with the AEH and finite element method. In addition, the wave speeds

obtained from the AEH stiffnesses are compared with those determined from

common analytic estimates employed by the geophysical community to demon-

strate the necessity of using an accurate homogenization scheme, such as AEH.

A thorough parametric study of the synthetic rock fabric microstructures is

conducted to ascertain the effect of grain volume fractions and orientations on

seismic wave speed anisotropy.

1.2.3 Dissertation Outline

The dissertation is organized as follows. Chapter 2 presents the multiscale AEH for-

mulation and the finite element method used for the computation of microscale and
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macroscale fields. Chapter 2 also discusses the direct micromechanical failure analy-

sis procedure employed in the random heterogeneous material and FGM portions of

the work. Chapter 3 focuses on the characterization of the statistical and homog-

enized thermoelastic material properties of random heterogeneous materials. The

direct micromechanical failure analysis and multiscale simulations of random hetero-

geneous materials is reserved for Chapter 4. In Chapter 5, the transient multiscale

thermoelastic analysis of FGMs with the coupled AEH and finite element methods is

explored. Chapter 6 discusses the characterization of seismic wave speed anisotropy

in heterogeneous rock fabrics. Finally, Chapter 7 presents a summary of the conclu-

sions drawn from the various studies performed in this work.
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CHAPTER 2

MULTISCALE ANALYSIS USING THE ASYMPTOTIC EXPANSION

HOMOGENIZATION METHOD

In this chapter, the multiscale formulation of the transient heat conduction and ther-

moelasticity problems using the AEH method is presented. Subsequently, the finite

element solution of the microscale and macroscale problems is discussed. The final

portion of this chapter details the direct micromechanical failure analysis procedure.

Note that in the following derivations, indicial and direct notation is used interchange-

ably.

2.1 Heat Conduction Problem

Figure 2.1 depicts a two-phase functionally graded body with spatially varying mi-

crostructure. The response of the material at the microstructural level is analyzed

using representative material elements (RMEs) of size , where is much smaller than

the characteristic length L of the of the macroscopic body. Note that the ratio of

the length scales is ε = /L, where ε << 1. In addition, the coordinates used for

analysis of the macroscopic problem x are related to the microscopic coordinates y as

y = x/ε. Let y ∈ Y where Y =]0, Y1[ × ]0, Y2[ × ]0, Y3[ is the RME domain and ]a, b[

defines the open set. All field variables are assumed to depend on both the macro-

scopic and microscopic coordinates and time t, i.e., Φε = Φ(x,y, t) = Φ(x,x/ε, t),

where the superscript ε is used to denote dependence of the variables on each of the

length scales.

The transient temperature field is governed by conservation of thermal energy and

Fourier’s law of heat conduction (e.g. see (Nowacki, 1975; Nowinski, 1978)),

−∂q
ε
i

∂xi
= ρεCε

v θ̇
ε
, qεi = −κεij

∂θε

∂xj
, (1)
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Figure 1: Schematic of two-phase functionally graded body with spatially varying
microstructure.

where qεi are the components of the heat flux vector, θε is the change in temperature

from the reference state, ρε is the density and Cε
v and κεij are the specific heat capacity

and thermal conductivity tensor, respectively. The corresponding thermal boundary

conditions are
θε = θ̂ on Γθ,

−qεini = q̂ on Γq,

−qεini + hc (θ
ε − θ∞) = 0 on Γc,

(2)

where θ̂ is the prescribed temperature on the boundary Γθ, q̂ is the heat flux prescribed

normal to the boundary Γq, ni are the components of the vector outward normal to

the boundary and hc and θ∞ are the convection coefficient and temperature of the

surrounding media on the boundary Γc. The union of Γθ, Γq and Γc comprise the

entire boundary Γ. The weak form of the heat conduction problem is obtained by
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multiplying (1)1 by a test function w, integrating over the domain Ω and utilizing

(1)2. The resulting weak form isZ
Ω

κεij
∂θε

∂xj

∂w

∂xi
dΩ =

Z
Ω

ρεCε
v θ̇

ε
wdΩ+

Z
Γq

q̂wdΓ−
Z
Γc

hc (θ
ε − θ∞)wdΓ ∀ w(x,y). (3)

To proceed with the multiscale formulation of the heat conduction problem, a two-

scale asymptotic expansion is assumed for the temperature field (Bensoussan et al.,

1978; Sanchez-Palencia, 1983),

θε(x, t) = θ0(x,y, t) + εθ1(x,y, t) + ε2θ2(x,y, t) + . . . . (4)

In further derivations, it will be useful to note that by using the chain rule and the

definition of y that

dηε(x, t)

dxi
=

∂ηε(x,y, t)

∂xi
+
1

ε

∂ηε(x,y, t)

∂yi
, (5)

and in addition, for a periodic function Ψ(y), as ε→ 0+, thatZ
Ω

Ψ(
x

ε
)dΩ =

1

|Y |

Z
Ω

Z
Y

Ψ(y)dY dΩ. (6)

Substitution of θε(x, t) from (4) into the first term of (3) and making use of the

relation (5) results inZ
Ω

κεij

½
ε−2

∂θ0

∂yj

∂w

∂yi
+ ε−1

∙
∂θ0

∂yj

∂w

∂xi
+

µ
∂θ0

∂xj
+

∂θ1

∂yj

¶
∂w

∂yi

¸
+

∙µ
∂θ0

∂xj
+

∂θ1

∂yj

¶
∂w

∂xi
+

µ
∂θ1

∂xj
+

∂θ2

∂yj

¶
∂w

∂yi

¸
+ ε (. . .)

¾
dΩ

=

Z
Ω

ρεCε
v θ̇

ε
wdΩ+

Z
Γq

q̂wdΓ−
Z
Γc

hc (θ
ε − θ∞)wdΓ.

(7)

It can be demonstrated that θ0(x,y, t) = θ0(x, t) by multiplying (7) by ε2, choosing

the test function w = θ0, taking the limit as ε → 0+ and noting that κij is positive

definite.
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A key component of the multiscale formulation is to assume a decomposition for

θ1(x,y, t) in terms of θ0(x, t) in the form (Bensoussan et al., 1978; Sanchez-Palencia,

1983)

θ1(x,y, t) = −φk(x,y, t)∂θ
0(x, t)

∂xk
, (8)

where φk(x,y, t) are auxiliary microstructural fields that relate the first order terms

to the zeroth order terms in the asymptotic expansion for the temperature field. To

obtain an equation for the solution of φk(x,y, t), the decomposition (8) is inserted

into (7) and the resulting expression is multiplied by ε. Subsequently, the limit is

taken as ε→ 0+ with the test function choice w = w(y). Noting that Ω and ∂θ0/∂xk

are arbitrary, one obtains the weak form for φk(x,y, t),Z
Y

κεij
∂φk

∂yj

∂w(y)

∂yi
dY =

Z
Y

κεik
∂w(y)

∂yi
dY ∀ w(y). (9)

The auxiliary fields φk(x,y, t) for k = 1, 2, 3 are subject to periodic boundary condi-

tions over the RME domain Y . It should be noted that the thermal conductivities κεij

can vary as a function of time, for example when considering temperature dependent

material properties.

Equating terms of ε0 in (7), choosing the test function w = w(x) and taking the limit

as ε→ 0+ yields the weak form of the macroscopic equation for θ0, which isZ
Ω

κHij
∂φk

∂xj

∂w(x)

∂xi
dY

=

Z
Ω

ρHCH
v θ̇

0
w(x)dΩ+

Z
Γq

q̂w(x)dΓ−
Z
Γc

hc
¡
θ0 − θ∞

¢
w(x)dΓ ∀ w(x),

(10)

where κHij is the homogenized thermal conductivity, ρH is the homogenized density

and CH
v is the homogenized specific heat capacity. The homogenized quantities are

κHik(x, t) =
1

|Y |

Z
Y

µ
κεik − κεij

∂φk

∂yj

¶
dY, ρH(x, t) =

1

|Y |

Z
Y

ρεdY,

CH
v (x, t) =

1

|Y |

Z
Y

Cε
vdY.

(11)
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Note that the homogenized thermal conductivity requires the solution for φk(x,y, t).

Once the macroscopic temperature field θ0(x, t) is found via the solution of (10), one

can begin the process of determining the microflux components. Using the expansion

(4) and Fourier’s law (1)2, the following expansion for the heat flux qεi is obtained

qεi (x, t) = q0i (x,y, t) + εq1i (x,y, t) + ε2q2i (x,y, t) + . . . . (12)

Since ε is small, the term q0i (x,y, t) represents the microscopic heat flux components.

The microscopic heat flux components can be related to the macroscopic temperature

gradients via an interscale transfer operator of the form

q0i (x,y, t) = κεij

µ
δjk −

∂φk (x,y, t)

∂yj

¶
∂θ0(x, t)

∂xk
. (13)

Lastly, it is noted that average macroscopic flux components q̄i(x, t) are determined

by simply integrating the corresponding microscopic quantities q0i (x,y, t) over the

RME domain Y and dividing by the RME volume |Y |.

2.2 Thermoelasticity Problem

For the thermoelasticity problem, the equations of motion and constitutive relation-

ship are (e.g. see (Nowacki, 1975; Nowinski, 1978))

∂σεij
∂xj

= ρεüεi , σεij = Cε
ijkle

ε
kl − βεijθ

ε, (14)

where σεij are the components of the Cauchy stress tensor, uεi are the displacement

components, Cijkl are the elastic constants, βεij are the stress-temperature moduli and

eεkl are the components of the infinitesimal strain tensor. Note that the strains eεkl

are related to the displacement via the relation

eεkl =
1

2

µ
∂uεk
∂xl

+
∂uεl
∂xk

¶
. (15)

The mechanical boundary conditions for (14)1 are

uεi = ûi on Γu,

σεijnj = σ̂i on Γσ,
(16)
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where ûi are the prescribed displacements on the boundary Γu and σ̂i are the pre-

scribed tractions on the boundary Γσ. Note that the union of Γu and Γσ comprise

the entire boundary Γ. The weak form of the equations of motion are obtained by

multiplying (14)1 by a test vector vi, utilizing the constitutive relation (14)2, inte-

grating over the domain Ω and making use of the divergence theorem. The resulting

weak-form of the thermoelasticity problem isZ
Ω

Cε
ijkl

∂uεk
∂xl

∂vi
∂xj

dΩ−
Z
Ω

βεijθ
ε ∂vi
∂xj

dΩ =

Z
Ω

ρεüεividΩ+

Z
Γσ

σ̂ividΓ ∀ vi(x,y). (17)

Similar to the temperature field in the heat conduction problem, a two scale as-

ymptotic expansion is assumed for the displacements in the form (Francort, 1983;

Brahim-Otsmane et al., 1998)

uεi (x, t) = u0i (x,y, t) + εu1i (x,y, t) + ε2u2i (x,y, t) . . . . (18)

Substitution of the expansions (4) and (18) into the first two terms of the weak form

(17) yields Z
Ω

Cε
ijkl

½
ε−2

∂u0k
∂yl

∂vi
∂yj

+ ε−1
∙µ

∂u0k
∂xl

+
∂u1k
∂yl

¶
∂vi
∂yj

+
∂u0k
∂yl

∂vi
∂xj

¸
+

∙µ
∂u0k
∂xl

+
∂u1k
∂yl

¶
∂vi
∂xj

+

µ
∂u1k
∂xl

+
∂u2k
∂yl

¶
∂vi
∂yj

+ ε (. . .)

¸¾
dΩ−Z

Ω

βεij

∙
ε−1θ0

∂vi
∂yj

+

µ
θ0
∂vi
∂xj

+ θ1
∂vi
∂yj

¶
+ ε (. . .)

¸
dΩ

=

Z
Ω

ρεüεividΩ+

Z
Γσ

σ̂ividΓ.

(19)

Multiplication of (19) by ε2, choosing vi = u0i , taking the limit as ε→ 0+ and noting

that Cε
ijkl is positive-definite requires that the first order term in the displacement

expansion not be a function of y, i.e., u0k(x,y, t) = u0k(x, t).

To proceed with the multiscale formulation, the following decomposition is used for

u1k(x,y, t) (Bensoussan et al., 1978; Francort, 1983; Brahim-Otsmane et al., 1998)

u1k(x,y, t) = −χpqk (x,y, t)
∂u0p(x, t)

∂xq
+ ψk(x,y, t)θ

0(x, t), (20)
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where χpqk (x,y, t) and ψk(x,y, t) are auxiliary functions that relate the first order term

in the asymptotic expansion for the displacement to the zeroth order terms for the

displacement and temperature, respectively. To obtain equations for χpqk (x,y, t) and

ψk(x,y, t), the decomposition is first inserted into (19). Choosing the test function

vi = vi(y), multiplying (19) by ε, taking the limit as ε → 0+ and noting that Ω,

∂u0p/∂xq and θ0 are arbitrary yields the following result,Z
Y

Cε
ijkl

∂χpqk
∂yl

∂vi(y)

∂yj
dY =

Z
Y

Cε
ijpq

∂vi(y)

∂yj
dY ∀ vi(y),

Z
Y

Cε
ijkl

∂ψk

∂yl

∂vi(y)

∂yj
dY =

Z
Y

βεij
∂vi(y)

∂yj
dY ∀ vi(y).

(21)

As was the case for φk(x,y, t) in the heat conduction problem, both χpq
k (x,y, t) and

ψk(x,y, t) are subject to periodic boundary conditions over the RME domain Y . The

weak form of the equations of motion for the macroscopic displacements u0k(x, t) is

obtained by equating terms of ε0 in equation (19). Next, the test function choice

vi = vi(x) is selected and the limit is taken as ε → 0+, to obtain the macroscopic

governing equationZ
Ω

CH
ijkl

∂u0k
∂xl

∂vi
∂xj

dΩ =

Z
Ω

ρH ü0i vidΩ+

Z
Ω

βHij θ
0 ∂vi
∂xj

dΩ+

Z
Γσ

σ̂ividΓ ∀ vi(x), (22)

where CH
ijkl, βHij and ρH are the respective homogenized elastic stiffnesses, stress-

temperature moduli and density. The aforementioned homogenized properties are

computed through the expressions

CH
ijkl(x, t) =

1

|Y |

Z
Y

Ã
Cε
ijkl − Cε

ijpq

∂χklp
∂yq

!
dY,

βHij (x, t) =
1

|Y |

Z
Y

µ
βεij − Cε

ijkl

∂ψk

∂yl

¶
dY,

ρH(x, t) =
1

|Y |

Z
Y

ρεdY,

(23)

23



where the tensors CH
ijkl and βHij require knowledge of χpqk (x,y, t) and ψk(x,y, t), re-

spectively.

Once the macroscopic displacements u0k(x, t) in (22) and macroscopic temperature

θ0(x, t) are known, the microscopic stress components can be computed. It is first

noted that an asymptotic expansion for the stresses σεij can be created utilizing ex-

pansions (4) and (20) in the constitutive relationship (14)2 yielding

σεij(x, t) = σ0ij(x,y, t) + εσ1ij(x,y, t) + ε2σ2ij(x,y, t) + . . . . (24)

With ε being a small quantity, the microstresses are essentially the first order term in

(24), σ0ij(x,y, t). The microstresses are related to the macroscopic strains e0kl(x, t) =

(∂u0k(x, t)/∂xl + ∂u0l (x, t)/∂xk) /2 and macroscopic temperature θ0(x, t) via the in-

terscale transfer operator

σ0ij(x,y, t) = Cε
ijkl

µ
δkpδlq −

∂χpqk (x,y, t)

∂yl

¶
∂u0p(x, t)

∂xq

−
µ
βεij − Cε

ijkl

∂ψk (x,y, t)

∂yl

¶
θ0(x, t).

(25)

To determine the average macroscopic stress tensor σ̄ij(x, t), one simply integrates

the corresponding microscopic components over the RME domain Y and divides by

the RME volume |Y |.

2.3 Finite Element Formulation

In this section, the details of the finite element method for computing the field vari-

ables of interest at the microscopic and macroscopic length scales is presented. First,

the solutions for the microscale fields φk(x,y, t), χpqk (x,y, t) and ψk (x,y, t), which

are required for the computation of the homogenized material properties, microfluxes

and microstresses, are discussed. Subsequently, the finite element solutions for the

transient macroscopic field quantities θ0(x, t) and u0k(x, t) are presented.
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2.3.1 Microscale Problems

To obtain a finite element solution for the microscale heat conduction problem, the

field φk(x,y, t) and test function w(y) are discretized in the RME domain Y as

φk = Ñb(y)d̃
k
b , w = Ña(y)c̃a, k = 1, 2, 3, a, b = 1, 2, . . . , Nμ

d , (26)

where Nμ
d is the number of nodes in the domain, Ñb(y) is the finite element shape

function associated with node b, c̃a are the nodal constants associated with the test

function and d̃kb are nodal constants to be solved for. Substitution of φk and w from

(26) into (9) and noting that the result must hold for all test function nodal constants

c̃a yields the set of algebraic equations for nodal constants d̃kQ

K̃PQd̃
k
Q = F̃ k

P , (27)

where the node numbers a,b are related to the equations numbers P ,Q via the mapping

ID as P = ID(a), Q = ID(b), K̃PQ is the thermal stiffness matrix and F̃ k
p the load

vector. The stiffness matrix and load vector are computed as

K̃PQ =

Ã
Nμ
eX

r=1

k̃r

!
PQ

, F̃ k
P =

Ã
Nμ
eX

r=1

k̃rd̃rko

!
P

, k̃r =

Z
Y r

B̃T
aκ

εB̃bdY, (28)

where k̃r is the element stiffness matrix, Nμ
e is the number of elements, Y r is the

volume associated with element r, B̃a = ∇Ña and d̃rko are the nodal temperatures

corresponding to a linear temperature variation in the yk-direction of unit slope for

element r. It should be noted that while the preceding expressions are valid for

a three dimensional microstructures, the geometries of concern in this paper are all

two-dimensional. Therefore, only the test cases corresponding to k = 1, 2 need to be

performed, and hence, a two-dimensional finite element mesh is sufficient.

For the microscale thermomechanical problem, a solution for the vector field χkli (x,y, t)

is sought first. The desired vector field and test vector vi(y) are both discretized in

terms of finite element shape functions Ñb(y) and nodal constants as
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χkli = Ñb(y)d̂
kl
bi , vi = Ña(y)ĉai, k, l = 1, 2, 3, (29)

where ĉai are nodal constants associated with the test vector and d̂klbi are nodal con-

stants to be determined. Insertion of (29) into the weak form (21)1 and noting that

the result must hold for all ĉai produces the solution for the nodal constants d̂klbi

K̂PQd̂
kl
Q = F̂ kl

P , (30)

where K̂PQ is the stiffness matrix and F̂ kl
P the load vector for the test case denoted

by the indices k and l. The equation numbers P ,Q in (30) are related to the nodal

numbers and vector indices through the mapping ID as P = ID(a, i), Q = ID(b, j).

The stiffness matrix and load vector in equation (30) are computed as

K̂PQ =

Ã
Nμ
eX

r=1

k̂r

!
PQ

, F̂ kl
P =

Ã
Nμ
eX

r=1

k̂rd̂rklo

!
P

,

k̂r = eTi

⎛⎝Z
Y r

B̂T
aD

εB̂bdY

⎞⎠ ej,
(31)

d̂rklo being displacements for element r associated with the unit strain eokl, ei the unit

vector along the yi coordinate, Dε the 6× 6 contraction of Cε
ijkl and B̂a a matrix of

shape function spatial derivatives,

B̂T
a =

⎡⎢⎢⎢⎢⎢⎢⎣
∂Ña

∂y1
0 0 0

∂Ña

∂y3

∂Ña

∂y2

0
∂Ña

∂y2
0

∂Ña

∂y3
0

∂Ña

∂y1

0 0
∂Ña

∂y3

∂Ña

∂y2

∂Ña

∂y1
0

⎤⎥⎥⎥⎥⎥⎥⎦ . (32)

To obtain a solution for ψk (x,y, t), a similar discretization using finite element shape

functions is employed and is of the form

ψk = Ñb(y)ĝbk, (33)

where ĝbk are the desired nodal constants. Inserting (33) and the discretized form of

the test functions (29)2 into (21)2 and requiring that the result must hold for all ĉai

yields the algebraic equations
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K̂PQĝbk = ĤP , (34)

where ĤP is the load vector and K̂PQ is the same as in (31)1. The load vector ĤP

is computed as

ĤP =

Ã
Nμ
eX

r=1

k̂rĝro

!
P

, (35)

where ĝro are the nodal displacements for element r associated with the free ther-

mal expansion corresponding to a unit temperature change, eαkl = αε
kl, α

ε
kl being the

thermal expansion coefficients. The presented approximate solutions for χpqk (x,y, t)

and ψk (x,y, t) are applicable to three-dimensional microstructures, however, as pre-

viously mentioned only two-dimensional geometries are of interest here. By retaining

all three components of the desired solutions, albeit, restricting them to vary only

in the y1 − y2 plane, all of the nonzero components of the tensors CH
ijkl and βHij and

microstresses σ0ij(x,y, t) can be computed using a two-dimensional finite element for-

mulation. If plane stress conditions prevail at the macroscale, one need only perform

a plane stress reduction of the obtained thermoelastic constants.

2.3.2 Macroscale Problems

To solve the macroscopic heat conduction problem (10), the macroscopic temperature

θ0(x, t) and test functions w(x) are discretized as

θ0 = N̂b(x)s̃b, w = N̂a(x)q̃a, a, b = 1, 2, . . . , Nd, (36)

where N̂b(x) is the finite element shape function associated with node b, q̃a are test

function nodal constants, s̃b are time-varying nodal temperature constants and Nd is

the number of finite element nodes. Insertion of the discretized temperature and test

function from (36) into the weak form (10) and noting that the result must hold for

all constants q̃a yields a system of first-order ordinary differential equations in time

for s̃b,

M̃PQ

.

s̃Q + L̃PQs̃Q = G̃P , (37)
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where nodal numbers a, b are mapped into the equation numbers P , Q by the rela-

tions P = ID(a), Q = ID(b), M̃PQ and L̃PQ are the respective thermal mass and

stiffnessmatrices and G̃P is the thermal load vector. The matrices and vector of (37)

are computed as

M̃PQ =

Z
Ω

ρHCH
v N̂aN̂bdΩ,

L̃PQ =

Z
Ω

∇N̂T
a κ

H∇N̂bdΩ+

Z
Γc

hcN̂aN̂bdΓ,

G̃P =

Z
Γq

q̂N̂adΓ+

Z
Γc

hcθ∞N̂adΓ.

(38)

The discrete heat conduction equations (37) are integrated in time using the Galerkin

scheme from the α-family of implicit time integration methods (e.g. see (Reddy,

1993)). If steady state conditions prevail, (37) becomes a set of simultaneous coupled

algebraic equations and is solved using standard techniques.

To obtain a solution for the macroscopic thermoelasticity problem (22), the macro-

scopic displacements u0j(x, t) and test functions vi(x) are discretized in a similar

fashion to the heat conduction problem, yielding

u0j = N̂b(x)ŝbj, vi = N̂a(x)q̂ai, (39)

q̂ai being nodal constants associated with the test vector and ŝbj the time-varying

nodal constants to be determined. Utilizing the discretization (39) in the weak form of

the macroscopic equations of motion (22) results in a system of second-order ordinary

differential equations for ŝbj,

M̂PQ

..

ŝQ + L̂PQŝQ = ĜP , (40)

where the nodal values are related to the global equations numbers through the map-

ping P = ID(a, i), Q = ID(b, j), M̂PQ is the mass matrix, L̂PQ is the stiffness
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matrix and ĜP is the load vector. The matrices M̂PQ, L̂PQ and vector ĜP have the

definitions

M̂PQ = e
T
i

⎛⎝Z
Ω

ρHN̂aN̂bdΩ

⎞⎠ ej,
L̂PQ = e

T
i

⎛⎝Z
Ω

BT
aD

HBbdΩ

⎞⎠ ej,
ĜP = e

T
i

⎛⎝Z
Ω

θ0BT
aβ

HdΩ

⎞⎠− eTi
⎛⎝Z
Γu

θ0N̂aβ
H
ijnjdΓ

⎞⎠+ eTi
⎛⎝Z

Ω

N̂aσ̂idΓ

⎞⎠ ,

(41)

whereDH is the 6×6 contraction of CH
ijkl, Ba is a matrix of shape function derivatives

similar to (32), albeit with Ña replaced with N̂a and y replaced with x, and βH is the

6×1 vector form of the homogenized stress-temperature moduli βHij . The second-order

ordinary differential equations for ŝQ are solved using the Galerkin scheme from the

Newmark family of implicit time integration schemes (e.g. see (Reddy, 1993)). Similar

to the heat conduction problem, if steady state conditions prevail, (40) becomes a set

of simultaneous coupled algebraic equations and is solved using standard techniques.

2.4 Direct Micromechanical Failure Analysis

A major reason for performing a multiscale analysis is to accurately compute the

stress fields at the microscale, which in turn, allows for a more accurate evaluation

of material failure via application of phase specific failure criteria. The ability to

perform a direct micromechanical failure analysis is one of the main advantages of

the multiscale approach.

To begin the direct micromechanical failure analysis process, the microstresses are de-

termined via the interscale transfer operators at key locations throughout the macro-

scopic body, for example, at the quadrature points or nodes from the macroscopic

analysis. At each of these locations, the microstresses are entered into phase specific

failure criteria and a factor of safety is computed over the entire RME domain Y . If
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the material phase in question is ductile, the von Mises failure criterion is used (e.g.

see (Dowling, 2006)). The factor of safety for ductile materials is computed as

F ductile
s (x,y, t) =

Sy
σ0(x,y, t)

,

σ0(x,y, t) =
p
σ21 + σ22 + σ23 − σ1σ2 − σ2σ3 − σ1σ3,

(42)

where Sy is the yield strength and σi(x,y, t) are the principal stresses obtained from

the microstresses σ0ij(x,y, t). In the case of brittle materials, a modified-Mohr crite-

rion is utilized. The factor of safety using this theory is given as (e.g. see (Dowling,

2006))

F brittle
s (x,y, t) =

Sut
σ̃(x,y, t)

, σ̃(x,y, t) = max (C1, C2, C3, σ1, σ2, σ3) , (43)

where Ci are the Dowling coefficients (Dowling, 2006),

C1(x,y, t) =
1

2

∙
|σ1 − σ2|+

|Suc|− 2Sut
|Suc|

(σ1 + σ2)

¸
,

C2(x,y, t) =
1

2

∙
|σ2 − σ3|+

|Suc|− 2Sut
|Suc|

(σ2 + σ3)

¸
,

C3(x,y, t) =
1

2

∙
|σ3 − σ1|+

|Suc|− 2Sut
|Suc|

(σ3 + σ1)

¸
,

(44)

and Sut and Suc are the ultimate tensile and compressive strengths of the brittle

material, respectively. It should be noted that while the strengths Sy, Sut and Suc

may depend on the characteristic length of the microstructural features, the properties

used in this work are the bulk material strengths. That said, the microscopic factor

of safety over the microstructure Fmicro
s (x,y, t) is defined as

Fmicro
s (x,y, t) =

(
F ductile
s (x,y, t) if y ∈ Yductile

F brittle
s (x,y, t) if y ∈ Ybrittle

, (45)

where Yductile and Ybrittle denote the regions of the microstructure which are composed

of ductile or brittle phases, respectively. The macroscopic factor of safety Fmacro
s (x, t)

is defined as the minimum factor of safety occurring over the RME domain Y , which

can be written as

Fmacro
s (x, t) = min

y∈Y
Fmicro
s (x,y, t). (46)
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The factor of safety of the entire macroscopic body Fs(t) is simply the minimum of

Fmacro
s (x, t) occurring in Ω, or in other words,

Fs(t) = min
x∈Ω

Fmacro
s (x, t). (47)

Lastly, it should be emphasized that the preceding procedures for computing the

various factors of safety are conservative. Not only are the bulk strengths used even

in cases where the microstructural morphology length scales may be small enough to

warrant the use of strength parameters exceeding the bulk values, but morphological

intricacies could also give rise to very localized regions of high stress in the RME, and

hence, low factors of safety as per the definitions given in (46) and (47). Thus, even

at a macroscopic factor of safety Fmacro
s (x, t) of 1, it is likely that a majority of the

microstructure material is experiencing a stress state which is far from causing failure.

Therefore, it is probable that at loads exceeding those which give rise to Fmacro
s (x, t) =

1, the microstructure would only experience very localized yielding/brittle damage

and that the heterogeneous material would continue to carry significantly higher loads.

To track the behavior of heterogeneous materials into the nonlinear regime a more

complex analysis, for example an elastoplastic multiscale analysis, would have to be

undertaken (e.g. see (Ghosh et al., 1996; Fish and Yu, 2001; Kamiński and Figiel,

2001; González et al., 2004; Taliercio, 2005)). An analysis of this type, however, is

beyond the focus of the present work.
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CHAPTER 3

MICROSTRUCTURE CHARACTERIZATION AND

HOMOGENIZATION OF MATERIAL PROPERTIES FOR RANDOM

HETEROGENEOUS MATERIALS

Figure 2.1 depicts a heterogeneous body that is comprised of two distinct material

phases with random microstructure. In this chapter, the response of the material

at the microstructural level and the corresponding homogenized properties of the

random heterogeneous material are analyzed using representative material elements.

The RMEs are of size , where is much smaller than the characteristic length L of

the heterogeneous body. It is necessary to develop a method to create sample random

microstructures for the computational analysis of heterogeneous media. The method

presented here is simple to implement and yields realistic morphologies.

3.1 Simulation of Random Heterogeneous Microstructures

The concept of random morphology description functions is used in the present work

to help create realistic computational models of random microstructures. In this

approach, the morphology of a random two-phase material at the microstructural level

is defined through a level-cut of a random field. It is similar to the Gaussian random

field method originally proposed by Roberts and Teubner (1995). The approach has

been employed by Cao and Liu (2006) for tailoring porous microstructures to obtain

prescribed properties.

Consider a representative material element which occupies the domain Y = [0, ] ×

[0, ]. A RMDF is any arbitrary function f(y) which is defined over the region Y . The

RMDF function in conjunction with a cutoff value fo is used to define the two-phase

microstructure. All locations y ∈Y where f(y) is greater than the cutoff value fo

are assumed to be occupied by material phase 1. Similarly, all regions where f(y) is

less than the cutoff value fo are assumed to be occupied by material phase 2. Thus,
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the RMDF f (y) and cutoff value fo define the microstructural morphology and the

f (y) = fo isocontour constitutes the interface between the two material phases.

The following RMDF, which is a sum of two-dimensional Gaussian functions, is used

to create two-phase random microstructures,

f (y) =
NX
i=1

cie
−

⎡⎣(y1−y(i)1 )2+(y2−y(i)2 )2
w2
i

⎤⎦
. (48)

Here N is the total number of Gaussian functions that are used to define the RMDF.

The magnitudes ci ∈ [−1, 1] and centers (y(i)1 , y
(i)
2 ) ∈ Y of the Gaussian functions are

randomly chosen. The spatial widths of the individual Gaussian functions, denoted

by wi, are chosen to depend on the number of Gaussian functions in a very specific

manner in order to create increasingly complex morphological features as more and

more Gaussian functions are included in the RMDF,

wi = √
N
. (49)

For convenience, the RMDF f (y) and cutoff value fo are normalized to lie in the

range [0, 1] as follows,

f̄ (y) =
f (y)− fmin
fmax − fmin

, (50)

where fmin and fmax are the minimum and maximum values of f (y), respectively, in

the RME region Y . As stated previously, the material property C (y) at a location

within the base cell is defined as

C (y) =

(
C(1) if f̄ (y) > f̄o

C(2) if f̄ (y) < f̄o
, (51)

where C(i) denotes the material property of phase i and f̄o is the normalized cutoff

value. The volume fraction V1 of the first material phase is computed from the formula

V1 =
1

|Y |

Z
Y

H
¡
f̄ (y)− f̄o

¢
dY, (52)
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where H (·) is the Heaviside step function. Choosing f̄o = 0 yields a volume fraction

V1 = 1 and conversely choosing f̄o = 1 gives V1 = 0. Note that the sum of the phase

volume fractions has to equal 1, i.e., V1 + V2 = 1, since there are no voids present in

the microstructure.

As previously noted, the complexity of the morphological features increases as the

number of Gaussian functions N is increased. It is recommended that N be at least

as large as 50 to obtain sufficiently complex random microstructures. Since the AEH

method presented in the next section is based on the assumption of locally periodic

media, the Gaussian functions are ‘tiled’ about the cell domain Y to create a locally

periodic microstructure with continuous material interfaces across cell boundaries.

This is implemented by introducing Gaussian sources of equal magnitude ci at loca-

tions (y(i)1 + k1 , y
(i)
2 + k2 ) where k1and k2 are integers that can take on values of

either −1,0 or 1. This results in a spatially periodic RMDF in the neighborhood of

the base cell Y . The corresponding minimum and maximum values fmin and fmax

are evaluated over the cell domain Y and random microstructures of varying phase

volume fractions are generated by varying the cutoff value f̄o. The microstructures

thus created are periodic with no discontinuities in the the material interfaces across

cell boundaries when they are ‘tiled’. It is important to note, however, that phase

boundaries that closely coincide with the RME boundary do occasionally occur thus

creating a microstructure which at a glance may not appear to be periodic. Upon

closer inspection, though, all microstructures created via this method are easily veri-

fied as being periodic.

A sample realization of a RMDF over the domain Y is depicted in Figure 3.1 for

a specific choice of random parameters ci, y
(i)
1 and y

(i)
2 for N = 800. The volume

fraction V1, which is obtained using equation (52), is shown in Figure 3.2 as a func-

tion of the cutoff value f̄o for the RMDF depicted in Figure 3.1. It is observed that

the volume fraction has a nonlinear dependence on the cutoff value and the shape
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Figure 2: Sample RMDF with N = 800.

Figure 3: Volume fraction vs. cutoff value for sample RMDF with N = 800.
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Figure 4: Sample RMDF microstructures with N = 800. Volume fractions shown
are a) V1 = 0.05, b) 0.25, c) 0.5, d) 0.75 and e) 0.95.
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of the curve depends on the choice of RMDF. Nevertheless, it is possible to create

a random microstructure with a desired volume fraction by choosing an appropri-

ate value for the cutoff value f̄o. Microstructural morphologies corresponding to the

RMDF in Figure 3.1 are shown in Figure 3.3 for several different volume fractions.

When the volume fraction of one material phase is much smaller than the other,

the resulting microstructure is one in which irregularly shaped particles of the phase

are embedded in a matrix of the other material phase (Figures 3.3(a),(b),(d), and

(e)). In comparison, when the volume fractions of the constituent phases are nearly

equal, an interpenetrating/skeletal microstructure with no clearly defined matrix and

particulate phases is obtained (Figure 3.3(c)) (Wegner and Gibson, 2000/2001).

Actual micrographs of Al/Al2O3 and W/Cu random composite materials fabricated

using typical manufacturing techniques are shown next to sample RMDF microstruc-

tures in Figure 3.4 (Cheng et al., 2006; del Rio et al., 2007). The number of Gaussian

functions, N , are chosen such that the resulting RMDF microstructures have the

same characteristic length scale as the micrographs (see Section 3.2.1). It can be seen

that the morphological features of the computer generated RMDF microstructures

compare well with the actual micrographs of random composite materials. It should

be noted that the intent here is not to reconstruct the actual microstructures but to

create microstructures that are qualitatively similar to actual micrographs.

3.2 Microstructural Characterization of Random Microstructures

The proposed RMDF methodology is capable of generating a broad range of mi-

crostructures that compare well with actual micrographs. In this section, common

statistical techniques such as the n-point probability functions and cluster functions

are utilized to characterize the simulated microstructures. For purposes of the statis-

tical analysis, we define an ensemble as the collection of all possible realizations of

random microstructures generated by the RMDF method. It should be noted that
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Figure 5: Comparison of actual micrographs and simulated RMDF microstructures.
Shown are a) actual Al/Al2O3 micrograph (del Rio et al., 2007), b) black and white
image of actual Al/Al2O3 micrograph with c) sample N = 1,832 simulated RMDF
microstructure and e) actual W/Cu micrograph (Cheng et al., 2006), e) black and
white image of W/Cu micrograph with f) sample N = 2,605 microstructure

microstructures obtained by simply translating an RMDF in the y1 − y2 plane are

also considered to be distinct realizations.

3.2.1 n-Point Probability Functions

We begin by defining an indicator function I(i) (y) which is either 1 or 0 depending

on whether y is a location of phase i material or not, respectively. With the indicator

function defined and noting that P {·} is the probability of the argument being true,

it is possible to define an n-point probability function (Torquato and Stell, 1982)
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S(i)n (y1,y2, . . . ,yn) = P
©
I(i) (y1) = 1,I(i) (y2) = 1, . . . ,I(i) (yn) = 1

ª
. (53)

That is, S(i)n is the probability that n points at positions y1,y2, . . . ,yn are located

in phase i. It should be noted that the one-point probability function S
(i)
1 , which is

simply the volume fraction for phase i, provides only limited insight into the nature

of the microstructure. Instead, we choose to focus on the two-point probability S
(i)
2

since it provides ample information about the microstructure.

The microstructures generated using the RMDF method are found to be statistically

homogeneous. That is, there is no preferred origin in the system and the n-point

probability functions depends on the relative positions, not on absolute positions, of

points y1,y2, . . . ,yn. For statistically homogeneous media, the two-point probability

functions can be written as

S
(i)
2 (y1,y2) = S

(i)
2 (p) = P

©
I(i) (p) = 1

ª
, (54)

where p = y2−y1. For computational purposes, the two-point probability function is

typically expressed as a function of the radial distance and orientation of the relative

position vector as S
(i)
2 (p) = S

(i)
2 (r, θ), where r = |p| and θ = tan−1 (p2/p1). A

technique that was originally proposed by Smith and Torquato (1988) is used to

calculate the two-point probability function. For each realization, a sampling template

with a random origin is laid down on the random media. The circular template,

which is constructed to have many divisions in r and θ, contains many line segments

of different lengths and orientations which enable the calculation of the two-point

probability function. The phase information is recorded at each sampling point on

the template. The process is repeated many times for a particular microstructure

realization, each time the template having a new random origin. In addition, the

procedure is repeated over a large number of realizations of the random media with

the same volume fractions and the results averaged to obtain the trends of S(i)2 as a
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function of both r and θ. Numerical results indicate that the two-point probability

function S
(i)
2 (r, θ) are independent of the orientation θ, which implies that the RMDF

microstructures are statistically isotropic. This behavior can be attributed to the

nature of the Gaussian functions in the RMDF, which are functions of only r, not θ.

The two-point probability function S
(1)
2 (r) is shown in Figure 3.5(a) as a function

of the normalized radial coordinate r/ for RMDF microstructures with N = 800.

The results are generated using 1, 000 realizations, each realization having 10, 000

randomly located sampling grids with the data averaged over all angles. It is also

worth noting that when r = 0, y1 and y2 coincide and the two-point probability

function is equal to the one-point probability function, which in turn is equal to the

volume fraction V1. As r increases, S
(1)
2 (r) asymptotically approach V 2

1 . For the

microstructures created using the RMDF method, the number of Gaussian functions

N has a significant effect on the rate of decrease of the two-point probability function

curves as shown in Figure 3.5(b). As the number of Gaussian sources in the RMDF

is increased, the S(1)2 (r) curve approaches the asymptotic value of V 2
1 more rapidly. A

variety of length scales can be associated with a random microstructure (Torquato,

2002). In this work we use the following definition that was originally proposed by

Prager (1961) to define a characteristic length scale S for the quantitative comparison

of microstructural features,

S =

⎧⎨⎩
∞Z
0

r
h
S
(1)
2 (r)− V 2

1

i
dr

⎫⎬⎭
1/2

. (55)

The characteristic lengths obtained numerically are 0.0306 , 0.0153 and 0.00765 for

N = 200, 800 and 3, 200, respectively, for RMDF microstructures with V1 = 0.5.

The numerical results indicate that a quadrupling of the number of the sources in the

RMDF results in the characteristic length being halved. In addition, the characteristic

length also depends on the volume fraction of the constituent phases. Accordingly,

the characteristic length S can be approximated by the nondimensional equation

40



Figure 6: The two-point probability function S
(1)
2 (r) for RMDF Microstructures

as a function of r. Displayed are plots for a) different volume fractions V1 with the
number of Gaussian sources N = 800 and b) different numbers of Gaussian sources
with volume fraction V1 = 0.5
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Figure 7: Normalized coefficient c(V1) for the determination of the characteristic
length as a function V1 for RMDF microstructures with N = 800.

S
=

c(V1)√
N

, (56)

where the numerically obtained values for the coefficient c(V1) are plotted as a function

of the volume fraction in Figure 3.6. A polynomial curve fit for c(V1) yields the

following expression,

c(V1) = 0.435− 1.914
µ
V1 −

1

2

¶2
+ 7.694

µ
V1 −

1

2

¶4
− 27.395

µ
V1 −

1

2

¶6
. (57)

RMDF microstructures are shown in Figure 3.7(a) for three different choices of N ,

namely 200, 800 and 3, 200. It is evident from the figure that as the number of

Gaussian sources is increased, the complexity of the morphology increases and the

characteristic feature size decreases, which is consistent with equation (56). Figure

3.7(b) demonstrates that as the size of the RME is enlarged in proportion to
√
N ,

the characteristic length remains visibly unchanged. In other words, increasing the

number of Gaussian sources is equivalent to considering a larger volume of a random

material with fixed characteristic length.
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Figure 8: Sample RMDF microstructures for V1 = 0.5 and N = 200, 800 and 3,200.
Shown are a) microstructures with fixed and b) the same microstructures with RME
sizes increasing in proportion to

√
N .

It should be noted that the number of Gaussian functions N chosen to create the sim-

ulated microstructures shown earlier in Figures 3.4(c) and 3.4(f) are determined using

the methods described in this section. First, the S(1)2 (r) curves and the corresponding

characteristic length S of the actual micrographs were created using the template

method of Smith and Torquato (1988) and (55). The volume fractions of the con-

stituent phases are determined from the black and white images of the micrographs

in Figures 3.4(b) and 3.4(e). Subsequently, the curve fit (57) and (56) are used to
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Figure 9: The two-point cluster function C
(1)
2 (r) as a function of r for RMDF

microstructures for three different volume fractions.

determine the appropriate number of Gaussian sources N to match the characteristic

length of the actual and RMDF micrographs.

3.2.2 Cluster-Type Functions

The phase connectivity of the random microstructure can be characterized using the

n-point cluster function, C(i)
n (y1,y2, . . . ,yn) (Lee and Torquato, 1989). The n-point

cluster function is similar to the n-point probability function with the exception that

it measures the probability of the locations y1,y2, . . . ,yn not only belonging to the

same phase i, but also belonging to the same cluster. As for its computation, the

procedure is nearly identical to that for computing S
(i)
n with the only difference being

that one must ensure that the points in question lie within the same cluster. Similar

to the case for the n-point probability function, we focus solely on the two-point

cluster function C
(i)
2 (r). The two-point cluster function for phase 1 which is denoted

by C
(1)
2 (r) = C

(1)
2 (y1,y2) is plotted as a function of r = |y2 − y1| in Figure 3.8
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for three different volume fractions. As was the case for the two-point probability

function S2(r), the two-point cluster function C2(r) is also equal to V1 when r = 0, as

expected. However, unlike S2, the two-point cluster function does not asymptotically

approach the square of the volume fraction for large r. As shown in Figure 3.8, the

function C2 continues to decrease and asymptotically approach zero for large values

of r when V1 ≤ 0.5. In the case of microstructures with volume fraction V1 > 0.5,

the two-point cluster function curve approaches a non-zero asymptotic value. This

behavior can be explained as follows using the concept of percolation.

When the volume fraction V1 is small, the topology of the microstructure corresponds

to particles of material phase 1 embedded in a matrix of material phase 2. As the

volume fraction V1 increases, the size of the particles also increase until at some

critical point the particles become interconnected and material phase 1 becomes the

matrix phase. This point where the particulate phase transitions from a particulate

to matrix role, or in other words when the average cluster size of a certain phase

becomes infinite, is the point of percolation. The normalized cluster size S∗ for a

specific realization is defined as S/ 2 where S is the cluster size. A common method

for determining percolation is by plotting the ensemble average h1/S∗i versus the

volume fraction V1 as shown in Figure 3.9. The average cluster size reported here

is obtained by averaging over 1, 000 microstructural realizations with fixed volume

fraction. As can be seen in the figure, h1/S∗i approaches zero at V1 = 0.5. Thus, the

average cluster size approaches infinity when the phase volume fractions are equal.

That is, percolation occurs at V1 = 0.5 on average. It should be noted that, for a

specific RMDF microstructure, percolation need not occur exactly at V1 = 0.5 since

the volume fraction at which percolation occurs would depend on the morphology of

the selected microstructure.
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Figure 10: Average of the reciprocal cluster size as a function of the volume fraction
V1 for RMDF microstructures with N = 800.

3.3 Results for the Homogenized Material Properties of Random Heterogeneous Ma-

terials

In this section, the homogenized material properties are presented for random het-

erogeneous materials and the results compared with the Hashin-Shtrikman bounds

and self-consistent estimates. In addition, the homogenized material properties are

compared with experimental data reported in the literature for three different ran-

dom heterogeneous materials including one high-contrast material combination with

a large disparity in constituent properties.

Prior to providing numerical results for the homogenized material properties, it

is necessary to establish the convergence characteristics of the finite element solu-

tion. Of particular interest here is the accuracy of the homogenized material prop-

erties. The convergence of the homogenized material properties is investigated for

aluminum/alumina (Al/Al2O3) random heterogeneous materials with microstructures
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Material
Property

Al Al2O3 W Cu Mullite Mo Ni SS Resin

κ (W/m◦C) 233 30.0 172.1 377.7 5.2 139 − − −

E (GPa) 70.0 393.0 397.8 128.2 − − 207 193.8 1.31

ν 0.3 0.22 0.297 0.338 − − 0.31 0.29 0.4

α (10−6/◦C) 23.4 7.6 3.94 15.74 − − − − −

Table 3.1. Properties of selected materials considered in the present chapter.

similar to that shown in Figure 3.4(a)-(c) (del Rio et al., 2007). The material proper-

ties of Al and Al2O3 are listed in Table 3.1. This particular material combination is

chosen since it exhibits a moderately high contrast ratio of 7.8 for the thermal conduc-

tivity, 5.6 for the Young’s modulus and 3.2 for the thermal expansion coefficient. The

sample microstructure shown in Figure 3.10(a) is chosen for the convergence study.

This particular RMDF microstructure was generated using N = 800 terms and it has

an aluminum volume fraction of VAl = 0.5. The finite element mesh, which consists

of six-noded triangular elements, is designed to conform to the true microstructural

topology as is evident from the representative mesh shown in Figure 3.10(b). The

convergence of the finite element results is investigated by varying the number of

elements. The convergence of the homogenized thermal conductivity κH1 , Young’s

modulus EH
1 , shear modulus μH12 and thermal expansion coefficient αH

1 are shown in

Figure 3.11 as the number of elements Ne is increased. It is found that all the ho-

mogenized material properties are within 2.2% of the converged material properties

when
p
Ne/N = 2.0. In other words, it is sufficient to use Ne = 3, 200 elements for

RMDF microstructures generated using N = 800 Gaussian functions. Beyond this

level of mesh refinement, there is very little change in the computed homogenized

properties. To ensure good accuracy, the homogenized results presented below are

computed using a finite element mesh of no less than 3, 200 elements, with the actual

number being somewhat higher depending on the intricacy of the microstructure.
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Figure 11: Tiled representative material element (RME) for a N = 800, V1 = 0.5
microstructure. Shown are a) tiled RME and b) sample finite element mesh.
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Figure 12: Convergence of material properties with mesh refinement for representa-
tive Al/Al2O3 RMDF microstructures with N = 800.

The homogenized properties of random microstructures will in general depend on the

size of the chosen representative material element. In general, the RME should be

large enough to contain a sampling of the different microstructural features that can

occur for a given volume fraction. That is, the size of the RME relative to the

characteristic length scale S should be sufficiently large. There will be significant

variation in the homogenized properties between different representative material el-

ements if the ratio of / S is small. It is evident from (56) that the ratio / S can be

increased by increasing the number of terms N in the RMDF. The variation of the

homogenized material properties is investigated by analyzing a large number of dif-

ferent RMEs. The ensemble average of 1, 000 distinct RMEs is plotted in Figure 3.12.
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Figure 13: Comparison of homogenized material properties for different numbers
of sources N for Al/Al2O3 random heterogeneous media with error bars of plus or
minus three standard deviations. Shown are a) thermal conductivity and b) Young’s
modulus.
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For all ensemble averages shown, an error bar denoting plus/minus three standard

deviations is also presented. In other words, 99.73% of the random microstructures

have homogenized properties that lie within the error bars. It is observed that the

standard deviation for the homogenized material properties decreases as the number

of terms N , and as a consequence the ratio / S, increases. As expected, increasing

the size of the RME relative to the characteristic length of the microstructural fea-

tures leads to a better estimation of the material properties, i.e. smaller variation in

homogenized properties from one sample to another. Interestingly enough, the aver-

aged material properties are the same for N = 200, 800 and 3, 200. Stated differently,

the ensemble average of the homogenized material properties are independent of the

size of the RME relative to its characteristic length. Thus, the homogenized material

properties of a heterogeneous material can be computed accurately by averaging over

a large number of small RMEs. This is computationally more efficient than perform-

ing a single finite element analysis of a very large RME, a process which can take a

great deal of computational time.

The homogenized material properties are compared with the Hashin-Shtrikman bounds

(Hashin and Rosen, 1964; Hill, 1964; Hashin, 1965; Rosen and Hashin, 1970; Hashin,

1979) and the self-consistent estimate (Hill, 1965) for transversely isotropic materials.

The homogenized material properties for Al/Al2O3 are plotted in Figure 3.13 as a

function of the volume fraction VAl along with the corresponding Hashin-Shtrikman

bounds and the self-consistent estimate. It is observed that, for this particular mater-

ial combination, the homogenized material properties lie within the Hashin-Shtrikman

bounds and are nearly identical to those obtained by the self-consistent scheme. The

thermal conductivity κH predicted by the self-consistent method is off by less than

1.51% of the homogenized material properties for the entire range of volume fractions.

As was the case for the thermal conductivity, the other homogenized properties also

closely follow the self-consistent estimate with the maximum errors in the Young’s
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Figure 14: Comparison of Hashin-Shtrikman bounds, self-consistent estimate and
obtained effective property results as a function of volume fraction for Al/Al2O3

random heterogeneous media. Results are shown for a) thermal conductivity, b)
Young’s modulus, c) shear modulus and d) thermal expansion coefficient.

modulus EH , the shear modulus μH and the thermal expansion coefficient αH being

0.86%, 1.16%, and 0.70%, respectively. We also consider a tungsten/copper (W/Cu)

random heterogeneous material with microstructures similar to those shown in Fig-

ure 3.4(d)-(f) (Cheng et al., 2006). The material properties of W and Cu are listed in

Table 3.1. As is evident from Figure 3.14, the self-consistent and AEH material prop-

erties are in good agreement for the entire range of volume fractions. It is important

to note that the close correlation between the homogenized material properties and

the self-consistent estimate observed for these specific material combinations need
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Figure 15: Comparison of Hashin-Shtrikman bounds, self-consistent estimate and
obtained effective property results as a function of volume fraction for W/Cu random
heterogeneous media. Results shown for a) thermal conductivity, b) Young’s modulus,
c) shear modulus and d) thermal expansion.

not necessarily hold true for other material combinations. Further study is necessary

to quantify the correlation between the AEH and self-consistent estimates for high

contrast materials.

The homogenized thermal conductivity is compared with experimental results for an

actual Mullite/Mo random heterogeneous material with constituent properties listed

in Table 3.1. Sample micrographs of the Mullite/Mo random material are shown in

Figures 3.15(a)-(c) (Jin et al., 2005). The homogenized and experimentally obtained

thermal conductivity are compared in Figure 3.15(d) for a range of volume fractions.
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Figure 16: Actual Mullite/Mo micrographs (Jin et al., 2005) and comparison of
predicted and actual thermal conductivities. Volume fractions shown are a) VMo

= 0.2, b) VMo = 0.4 and c) VMo = 0.6 with comparison of thermal conductivity
predictions for RMDF microstructures, estimates and experimental values shown in
d).

It is observed that the computed homogenized thermal conductivity matches the ex-

perimental data very well with the exception of the microstructure corresponding to

VMo = 0.9. Next, the homogenized Young’s modulus is compared with experimen-

tal data for Ni/Al2O3 random heterogeneous materials (Aldrich et al., 2000). The

constituent material properties of Ni/Al2O3 are listed in Table 3.1. Representative

micrographs of Ni/Al2O3, shown in Figures 3.16(a)-(c), exhibit a great deal of ran-

domness. The homogenized material properties shown in Figure 3.16(d) compare

fairly well with experimental results for the most part except for certain intermediate
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Figure 17: Actual Ni/Al2O3 micrographs (Aldrich et al., 2000) and comparison of
predicted and actual Young’s modulus. Volume fractions shown are a) VNi = 0.15, b)
VNi = 0.5 and c) VNi = 0.65 with a comparison of Young’s modulus predictions for
RMDF microstructures, estimates and experimental values shown in d).

volume fractions. Due to a lack of error bars on the experimental results, it is not

entirely clear whether the discrepancies are real or due to experimental variability.

The effect of contrast ratio on the homogenized material properties is investigated by

considering a stainless steel/epoxy random heterogeneous material. As observed from

Table 3.1, the contrast ratio between the Young’s modulus of stainless steel and epoxy

is 148. Sample stainless steel/epoxy micrographs are shown in Figures 3.17(a)-(c) for

three different volume fractions (Wegner and Gibson, 2001). The homogenized ma-

terial properties are shown in Figure 3.17(d) along with the experimental results, the

Hashin-Shtrikman bounds and the self-consistent estimate. There is a large disparity
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Figure 18: Actual SS/Resin micrographs (Wegner and Gibson, 2001) and comparison
of predicted and actual Young’s modulus. Volume fractions are shown for a) VSS

= 0.65, b) VSS = 0.72 and c) VSS = 0.91 with a comparison of Young’s modulus
predictions for RMDF microstructures, estimates and experimental values shown in
d).

between the upper and lower bounds due to the significant difference in constituent

material properties. The experimentally obtained values of the Young’s moduli are

in fairly good agreement with the AEH results except for large volume fractions. The

difference between the two values is approximately 3.4% for VSS = 0.65. The cor-

responding difference between the self-consistent and experimental values is 23.9%.

Furthermore, unlike the other material combinations studied in this work that have

moderate disparities in the phase material properties, the self-consistent values do not

compare well with the AEH values for this high-contrast material combination. This
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indicates that the self-consistent scheme may not be very reliable in estimating the ef-

fective properties for high-contrast composites, however, further study would need to

be conducted in order to make more definitive statements with regard to this matter.

In the least, this example demonstrates the importance of using a method such as

AEH to accurately estimate homogenized material properties rather than assuming

that various estimation schemes will provide accurate effective property values.
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CHAPTER 4

DIRECT MICROMECHANICAL FAILURE ANALYSIS AND

MULTISCALE SIMULATIONS OF RANDOM HETEROGENEOUS

MATERIALS

In this chapter, the proposed multiscale approach for the analysis of heterogeneous

structural components with random microstructure is demonstrated for representative

metal/ceramic and metal/metal material combinations. After determining the initial

failure envelopes of the random heterogeneous materials, the proposed multiscale

analysis technique is demonstrated using two model problems with spatially varying

material heterogeneity.

4.1 Microstructural Heat Flux and Stresses

The microscale heat flux and stresses are computed for prescribed macroscopic loads

and a convergence study performed to ascertain the level of finite element refinement

necessary to obtain accurate results. Consider a random Al/Al2O3 microstructure of

width and height shown in Figure 4.1(a). This particular random microstructure

has been created using the RMDF approach using a total of N = 800 random sources.

The material properties of Al and Al2O3 are listed in Table 4.1. Both material phases

in the chosen microstructure have identical volume fractions, i.e., VAl = VAl2O3 = 0.5.

A representative finite element mesh used in the convergence study is shown in Figure

4.1(b). It consists of 7, 920 6-noded triangular elements. As is evident, the complex

morphological features are captured accurately by using a sufficient number of nodes

on the material interfaces.

A convergence study is performed by applying a uniform uniaxial macroscopic stress

state σ̄11(x) = 1 MPa and the corresponding peak value of the microstresses in the

RME are tracked as the mesh is refined. The maximum value of σ011 (x,y) is plotted

as a function of the number of elements Ne in Figure 4.1(c). It should be noted that

58



Figure 19: Sample Al/Al2O3 RMDF microstructure and accompanying finite element
mesh consisting of 7,920 elements with convergence of σ011 corresponding to an applied
macroscopic stress σ̄11 = 1 MPa. The RMDF microstructure is generated using N =
800 Gaussian sources with VAl = 0.5.
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the number of elements has been normalized by the number of RMDF sources N used

to create the random microstructure since the number of elements needed to obtain

accurate microstresses is expected to increase as the complexity of the microstructural

morphology increases. It is observed that the ratio
p
Ne/N has to be of the order

of 3.15 or larger for the microstresses to converge. For example, a finite element

mesh consisting of roughly Ne = 8, 000 elements is necessary to obtain accurate

microstresses for the random microstructure shown in Figure 4.1(a) which was created

using N = 800 RMDF Gaussian functions. The results presented in the following

sections are computed using a finite element mesh consisting of approximately 8, 000

elements to ensure sufficient accuracy.

A uniform macroscopic heat flux of q̄1(x) = 1 W/m2 is applied to a heterogeneous

structure as depicted in Figure 4.2(a) and the corresponding microscopic heat flux

components q01 (x,y) and q02 (x,y) are shown in Figures 4.2(b) and 4.2(c), respectively.

It is observed that there are highly localized regions that have a relatively high mi-

croscopic heat flux qo1 (x,y). The large heat flux occurs primarily in regions that have

a narrow material pathway for the heat to flow in the highly conducting Aluminum

phase. The ratio of the microscopic heat flux component q01 (x,y) to the macroscopic

heat flux q̄1(x) can be as high as 7.87 at certain locations for this particular random

microstructure. The microscopic heat flux component q02 (x,y) need not be zero al-

though the average macroscopic heat flux component q̄2(x) is zero. This is due to the

complex heat flow patterns within the random microstructure. It should be noted

that results given here are for a specific microstructure and volume fraction. The

distribution of heat flux and peak values will change significantly depending on the

random microstructure being studied. Nonetheless, these results demonstrate that

detailed information can be obtained at the microstructural level through a multiscale

approach.
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Figure 20: Schematic of a unit heat flux applied to a sample Al/Al2O3 random
heterogeneous specimen and plots of the corresponding microflux components.

The thermal deformation and microstresses are investigated for a heterogenous struc-

ture that is subjected to a uniform macroscopic temperature change θo (x) = 1◦C.

The structure is free to expand in all directions. The deformed shape of the RME is

shown in Figure 4.3(a). As is evident from the deformed shape of the boundaries,

the periodic boundary conditions are satisfied. The thermal microstresses σ011 (x,y) ,

σ022 (x,y) , σ
0
12 (x,y) and σ033 (x,y) are shown in Figures 4.3(b), (c), (d) and (e),

respectively. It should be noted that the microstress components are non-zero al-

though the average macroscopic stress components σ̄ij(x) are zero. This is due to the

heterogeneity of the material at lower length scales. In particular, the microstress

component σ033 (x,y) is nonzero, as is evident from Figure 4.3(e), even though the

average macrostress σ̄33(x) is zero. This implies that in general a state of plane stress
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Figure 21: Schematic of sample Al/Al2O3 random heterogeneous specimen subjected
to a unit temperature change along with the deformed microstructure and correspond-
ing microstress components. Shown are b) σ011 , c) σ022, d) σ012 and e) σ033 in MPa.
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at the macroscopic level does not necessarily imply plane stress conditions exist at

the microscopic level. Since aluminum has a larger thermal expansion coefficient than

alumina and the two phases are assumed to be perfectly bonded at the interface, a

positive temperature change induces a compressive stress σ033 (x,y) in the Al phase

and a tensile stress in the Al2O3 phase.

The microscopic deformation and microstress components due to an applied macro-

scopic uniaxial stress σ̄11(x) = 1 MPa are presented in Figure 4.4. The peak mi-

crostress σ011 (x,y) within the RME is more than 5 times the applied macroscopic

stress. In addition, the microstresses σ022 (x,y), σ
0
12 (x,y) and σ033 (x,y), shown in

Figures 4.4(c), (d) and (e), respectively, have minimum and maximum values that

are on the order of the applied uniaxial stress in the x1-direction, even though the

corresponding average macroscopic stresses σ̄22(x), σ̄12(x) and σ̄33(x) are all zero.

While these results pertain to a particular microstructure, the figures indicate that

stress patterns at the microscale are complex even when the macroscopic stress state

is very simple. In addition, the results indicate that the stress concentrations at the

microscale can be quite significant. This fact has important implications concerning

the strength of random heterogenous media which will be addressed next.

4.2 Initial Failure Envelopes for Al/Al2O3 and W/Cu

In this section, we use direct micromechanical failure analysis to obtain failure en-

velopes for random heterogeneous materials. Initial failure envelopes are generated

for random heterogeneous materials by applying macroscopically uniform tempera-

ture and average stresses and analyzing failure at the microstructural level. Failure

is checked at the quadrature points at the microstructural level and the appropriate

failure criteria is used depending on whether the point lies within the ductile or brittle

phase. Initial failure of the microstructure is assumed to occur when the microstresses

at one or more quadrature points exceeds the failure strength. The resulting failure
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Figure 22: Schematic of sample Al/Al2O3 random heterogeneous specimen subjected
to a uniform macroscopic stress σ̄11 = 1 MPa along with the deformed microstructure
and corresponding microstress components. Shown are b) σ011, c) σ022, d) σ012 and e)
σ033 in MPa.
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envelopes, while conservative, provide a realistic measure of the strength of random

heterogeneous material under multi-axial stress states. It should be noted that the

analysis of heterogenous materials loaded beyond their initial failure loads would re-

quire a nonlinear elastoplastic multiscale formulation (e.g. see (Terada and Kikuchi,

1995; Ghosh et al., 1996; Soppa et al., 2003)) which is not the focus of this work.

The microstresses consist of thermal and mechanical components which are evaluated

separately. First, the thermal microstresses (σ0ij)
thermal corresponding to a uniform

temperature change θ and zero macroscopic stresses (i.e., σ̄ij = 0) are determined

through multiscale analysis. Next, the mechanical microstresses are evaluated for

the following uniform macroscopic stress field,

σ̄11(ϕ) = σ0 cosϕ, σ̄22(ϕ) = σ0 sinϕ, (58)

and σ̄12(ϕ) = 0, where σ0 is an arbitrary constant stress and ϕ is a fixed angle.

The microstresses (σ0ij)
mech corresponding to the average stresses (58) are obtained

through the interscale transfer operators. The combined thermal and mechanical

microstresses are obtained using superposition as follows,

σ0ij = (σ
0
ij)

thermal + (σ0ij)
mech.

The value of σ0 at which initial failure occurs at the microstructural level (i.e.

Fmacro
s = 1) is denoted by σf0 and the corresponding point on the failure envelope

is

σ̄f1(ϕ) = σf0 cosϕ, σ̄f2(ϕ) = σf0 sinϕ.

The complete failure envelope for a particular random microstructure is obtained by

repeating the procedure with ϕ varying from 0◦ to 360◦. The initial failure envelopes
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Material
Property

Al Al2O3 W Cu

κ (W/m◦C) 233.0 30.0 172.1 377.7

E (GPa) 70.0 393.0 397.8 128.2

ν 0.3 0.22 0.297 0.338

α (10−6/◦C) 23.4 7.6 3.94 15.74

Sy (MPa) 275.0 − 1, 352.2 296.3

Sut (MPa) − 260.0 − −

Suc (MPa) − 2, 600.0 − −

Table 4.1. Thermal conductivity, κ, Young’s modulus, E, Poisson’s ratio, ν, thermal
expansion coefficient, α, yield strength, Sy, ultimate strength in tension, Sut, and
ultimate strength in compression, Suc, of selected materials considered in the present
chapter.

for an ensemble of 1, 000 random microstructures are averaged to obtain a mean

failure envelope that is useful for assessing the strength of random heterogeneous

components when precise information regarding the microstructure is lacking, which

is often the case in practical applications.

We first focus on the strength of a metal/ceramic heterogenous material. Specifi-

cally, we consider Al/Al2O3 microstructures created using the RMDF approach. The

relevant thermal and mechanical material properties of Al and Al2O3 are listed in

Table 4.1. The yield strength of ductile Al is taken to be Sy = 275 MPa. The

ultimate tensile and compressive strengths of the brittle Al2O3 are Sut = 260 MPa

and Suc = 2, 600 MPa, respectively. The initial failure envelopes are generated for

1, 000 distinct random microstructures. The average failure envelope as well as the

failure envelopes corresponding to plus and minus one standard deviation are shown

in Figure 4.5 for VAl = 0.5. The stresses σ̄1 and σ̄2 in this and all subsequent failure

envelopes are the macroscopic principal stresses. The scatter in the strength values
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Figure 23: Initial failure envelope for Al/Al2O3 random heterogeneous materials with
VAl = 0.5 as well as envelopes representing plus and minus one standard deviation.

can be attributed to the fact that there is significant variation in the peak stresses

from one random microstructure to another. The standard deviation is highest when

both principal stresses are compressive. The coefficient of variation lies in the range

of 10% to 16% for all points on the failure envelope. Despite the variability, the aver-

age initial failure envelope provides a reasonable estimate of the strength of random

heterogeneous materials under multi-axial loads. In what follows, it is understood

that the initial failure envelopes shown are obtained by averaging over a sufficiently

large ensemble of random microstructures.

The initial failure envelopes for various volume fractions ranging from VAl = 0 to VAl =

1 are shown in Figure 4.6(a). As is expected, a modified-Mohr failure envelope for

homogenous Al2O3 is obtained for VAl = 0 and a von Mises elliptical failure envelope

is obtained for VAl = 1. The failure envelope of Al2O3 is in general larger than the
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Figure 24: Initial failure envelopes for Al/Al2O3 random heterogeneous media.
Shown are plots corresponding to a) the whole range of volume fractions and b)
only intermediate volume fractions. The RMDF microstructures are generated using
N = 800 Gaussian sources.
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failure envelope for the Al phase especially when both σ̄1 and σ̄2 are compressive.

The failure envelopes for the intermediate volume fractions are approximately the

size of failure envelope for aluminum, or smaller. This indicates that the strength

of the weaker phase is the dominant factor that influences the overall strength of the

material. Enlarged failure envelopes for intermediate volume fractions are presented

in Figure 4.6(b). As can be seen from this figure, all volume fractions shown with the

exception of VAl = 0.1 have failure envelopes that are completely contained within the

aluminum failure envelope indicating that the combination of material phases often

yields a heterogeneous material that is weaker than either of its constituents. The

failure envelopes demonstrate that a metal/ceramic heterogeneous material has larger

strengths under compressive stresses than under tensile stresses. This is due to the

large compressive strengths of the ceramic phase relative to the tensile strength of

the metal and ceramic phases. Heterogeneous materials have higher strengths under

biaxial compression relative to the yield strength of the metal for low metal volume

fractions, e.g. VAl = 0.1. However, they exhibit lower strengths under tensile loads

compared to that of the metal. The heterogeneous material has a diamond shaped

failure envelope with rounded edges of varying radii that clearly draws some of its

characteristic features from the elliptical von Mises failure envelope and some from

the modified-Mohr failure envelope.

The failure envelope of a metal/metal heterogeneous is investigated next. Since both

constituents are ductile, the failure envelopes are expected to be distinctly different

from those presented earlier for metal/ceramic heterogeneous materials. The partic-

ular metal/metal heterogeneous material studied here is a W/Cu combination since it

has several high temperature applications. Tungsten has a higher yield strength and

stiffness but a significantly lower thermal conductivity than copper. The relevant ma-

terial properties are listed in Table 4.1. Direct micromechanical failure analysis was

performed by holding the material at its stress free reference temperature. The inter-
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Figure 25: Initial failure envelopes for W/Cu random heterogeneous media for inter-
mediate volume fractions. The RMDF microstructures are generated using N = 800
Gaussian sources.

faces are assumed to be perfectly bonded with an infinitely large interface strength.

Initial failure envelopes for a W/Cu heterogeneous material are shown in Figure 4.7

for intermediate volume fractions of copper. The failure envelopes, which are nearly

elliptical, decrease in size as the volume fraction of the copper phase increases since

copper is weaker than tungsten.

It is important to understand how temperature effects the failure envelopes in prac-

tical applications. At high temperatures, the thermally induced microstresses can

have a detrimental effect on the failure strength of a heterogeneous material. Failure

envelopes are created by holding the temperature θo fixed while the macroscopically

applied stresses are increased until the material fails at the microscopic level. Here,

θo represents the change in temperature from the stress free temperature. Failure

envelopes for a W/Cu heterogeneous material are shown in Figure 4.8 for three dif-
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Figure 26: Initial failure envelopes for W/Cu random heterogeneous media for three
different temperature changes θ = -50 ◦C, 0 ◦C and 50 ◦C. The RMDF microstructures
are generated using N = 800 Gaussian sources with VCu = 0.5.

ferent temperatures θo = 0◦C, 50◦C, and −50◦C. The failure envelopes correspond

to a volume fraction of VCu = 0.5. Figure 4.8 demonstrates that the temperature

has a significant effect on the failure of heterogeneous materials. The failure envelope

at the stress free reference temperature θo = 0◦C is approximately an off-axis ellipse

that is centered at σ̄1 = 0, σ̄2 = 0. As the temperature is increased by θo = 50◦C

from the stress free reference temperature, the internal thermal stresses cause the

center of the failure envelope to shift to the third quadrant accompanied by a small

change in shape. Thus, the heterogenous material cannot withstand large tensile

stresses at elevated temperatures due to the thermal microstresses. However, it is

still capable of withstanding large biaxial compressive stresses at temperatures above

the stress-free reference temperature. The trend is reversed when the heterogeneous

material is cooled below the stress-free reference temperature. The material can
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withstand larger biaxial tensile stresses when it is cooled but its ability to withstand

compressive stresses is reduced.

4.3 Multiscale Analysis of Heterogeneous Components

In this section, the proposed multiscale analysis technique is demonstrated using two

model problems. The random heterogeneous materials considered in the model prob-

lems belong to a class of materials known as functionally graded materials. FGMs are

heterogeneous material systems that are engineered to have a smooth spatial varia-

tion of material properties. This is achieved by gradually varying the microstructure

and relative volume fractions of the constituent phases from one point to another dur-

ing the fabrication process. By considering a spatially varying microstructure in the

model problems, we demonstrate that the proposed multiscale approach is well suited

for the accurate analysis of problems with complex spatially varying microstructural

morphologies. In addition to accurately computing the macroscopic field quantities for

both model problems, the multiscale approach also allows for a more detailed assess-

ment of failure of the random heterogeneous material of which the FGM components

are comprised. In both problems, the results show that the current implementation

of the direct micromechanical failure analysis provides a fairly conservative estimate

of failure.

4.3.1 Failure Analysis of an Al/Al2O3 Heterogeneous Component with Random Mi-

crostructure Subjected to a Pressure Load

In this first model problem, we perform a micro-macro computational analysis of

a simply supported Al/Al2O3 functionally graded thick beam that is subjected to a

mechanical load. The material exhibits a random heterogeneous microstructure with a

spatially varying volume fraction distribution. The geometry, loading and boundary

conditions of the functionally graded beam are shown in Figure 4.9. The beam,

which is of length 2L = 60 mm and height H = 15 mm, is subjected to a uniform
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Figure 27: Schematic of geometry and volume fraction distribution for a model
Al/Al2O3 functionally graded beam that is simply supported on the edges and sub-
jected to a uniform distributed load on its top surface.

distributed load of magnitude p0 = 5 MPa on its upper surface. Only the right half of

the beam is analyzed due to symmetry about the mid-span. The origin of the global

x1− x2 coordinate system is located on the bottom surface at the mid-span location.

The x1 and x2 directions are aligned with the longitudinal and thickness directions,

respectively. A two-dimensional plane stress analysis is performed at the macroscopic

level with symmetry boundary conditions u01(0, x2) = 0 and σ̄12(0, x2) = 0 applied

along the left edge. Simply supported boundary conditions at the right edge are

simulated by the pointwise boundary conditions u02(L, x2) = 0 and σ̄11(L, x2) = 0.

The beam consists of monolithic layers of Al2O3 and Al on the top and bottom

surfaces, respectively, each of which are of thickness H/6. The intermediate region

has a linearly graded volume fraction that varies only in the thickness direction as

follows,

VAl(x1, x2) =

⎧⎪⎨⎪⎩
1 if x2 ≤ H/6

1− 3

2H
(x2 −

H

6
) if H/6 < x2 < 5H/6

0 if x2 ≥ 5H/6

.
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The effective material properties at each location are determined using the asymptotic

homogenization and ensemble averaging procedure described in the preceding chapter.

A finite element mesh consisting of a total of 3, 600 6-noded triangular elements

is used to analyze the macroscopic thermoelasticity problem. The spatial variation

of the average macroscopic stresses σ̄11(x), σ̄12(x) and σ̄22(x) are shown in Figures

4.10(a)-(c) at the stress-free reference temperature. The peak compressive and tensile

longitudinal stresses σ̄min11 = −105.45 MPa and σ̄max11 = 36.38 occur at the top and

bottom surfaces, respectively. As expected, the largest shear stress occurs at the

simply supported edge and it is of magnitude |σ̄12|max = 16.00 MPa. The factor

of safety of the functionally graded beam is determined using the failure envelopes

for Al/Al2O3 shown earlier in Figure 4.5 for various volume fractions of aluminum.

The factor of safety Fmacro
s (x) at a point x is defined as that factor by which the

applied mechanical load of p0 = 5 MPa can be multiplied that would result in failure

at that point in the beam. The factor of safety thus obtained is plotted as a function

of the spatial coordinates in Figure 4.10(d). The lowest factor of safety Fs = 2.12

over the entire domain occurs at point A at a point on the mid-span at coordinates

x1 = 0, x2 = 4.5 mm with VAl = 0.8.

The macroscopic factor of safety distribution, shown in Figure 4.10(d), is based on an

ensemble average of 1, 000 distinct random microstructures. This approach works well

in practical applications since the specific random microstructures are seldom known

at every location within the body. Nevertheless, it is useful to compare the factor of

safety obtained from ensemble averages with the value obtained for sample random

microstructures. Specific microstructures are assigned to the critical location A and

their corresponding factor of safety Fmicro
s (x,y) obtained through failure analyses at

the microscopic level. Three sample random microstructures and their corresponding

microscopic factors of the safety are depicted in Figure 4.11. The minimum factor of

safety occurs in the brittle Al2O3 particles which experience large tensile microstresses.
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Figure 28: Contour plots of macroscopic stress components and factor of safety for
model problem 1. Shown are a) σ̄11, b) σ̄22, c) σ̄12 in MPa and d) factor of safety
Fmacro
s . The minimum factor of safety occurs at the critical location A.

It is observed that although the sample random microstructures are all quite distinct,

their minimum factors of safety, which are 1.94, 2.10 and 2.65, compare well with the

value of 2.12 that was obtained earlier using ensemble averages (Figure 4.10(d)).

4.3.2 Failure Analysis of a W/Cu Heterogeneous Component with Random Microstruc-

ture Subjected to a High Heat Flux

The second model problem concerns a W/Cu functionally graded component that

is subjected to an intense heat flux on a portion of its boundary. The geometry,

boundary conditions and loading are shown in Figure 4.12. Only the right half of

the body has been shown since it is symmetric about the plane x1 = 0. A portion of
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Figure 29: Three different sample RMDF microstructures at the critical location A
(VAl = 0.8) and the corresponding factors of safety Fmicro

s at the microscale. Shown
are a,b) sample I, c,d) sample II and e,f) sample III.
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Figure 30: Schematic of geometry and volume fraction distribution for a W/Cu
functionally graded component that is bi-directionally graded with an intense heat
flux applied on a portion of its boundary.

its top surface is subjected to an intense heat flux of magnitude 2 MW/m2 as shown

in the figure. The bottom and right edges are held at the reference temperature.

The W/Cu component has a 2 mm thick monolithic region of tungsten adjacent to

the surfaces that are subjected to the high heat flux. In addition, it has a 2 mm

thick monolithic region of copper near the bottom and right surfaces which are held

at the reference temperature. The intermediate region has a bilinear volume fraction

distribution, as shown in Figure 4.12. The material is assumed to be in a state of

plane stress at the macroscopic level. The heterogeneous component is analyzed using

a finite element mesh consisting of 4, 500 6-noded triangular elements.

The macroscopic temperature distribution is shown in Figure 4.13(a). The W/Cu

component experiences a peak temperature change of 74.75◦C at a point on the top

surface which belongs to the monolithic tungsten region. The highest temperature

change within the graded region is 52.12◦C. The spatial variation of the average
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Figure 31: Contour plots of temperature and macroscopic stress components in
a W/Cu functionally graded component. Shown are a) temperature θ in ◦C and
macroscopic stress components b) σ̄11, c)σ̄22, d) σ̄12 in MPa.

78

goupeea1
Stamp

goupeea1
Rectangle



macroscopic normal stresses σ̄11(x) is shown in Figure 4.13(b). The peak tensile

stress σ̄max11 = 17.54 MPa occurs at the point x1 = 0, x2 = 8.0 mm which lies on the

interface between the monolithic tungsten region and the graded region. The peak

compressive stress σ̄min11 = −12.83 MPa occurs in the functionally graded region at

x1 = 0, x2 = 5.33 mm. The normal stress σ̄22(x) and shear stress σ̄12(x) are shown in

Figures 4.13(c) and 4.13(d), respectively.

The accuracy of the macroscopic stress fields depends on the homogenization pro-

cedure used to determine the effective material properties. It has been previ-

ously shown the homogenized properties obtained using the self-consistent scheme

are nearly identical to those obtained using the asymptotic homogenization tech-

nique for random heterogeneous materials for the types of material combinations

considered here. Through-the-thickness plots of the macroscopic temperature and

stress fields obtained using two different homogenization schemes are plotted in Fig-

ure 4.14. The results demonstrate that the macroscopic fields are almost identical

for the self-consistent and the asymptotic homogenization methods. The peak tem-

perature θo and peak normal stresses σ̄max11 obtained through the self-consistent ho-

mogenization scheme are off by 0.09% and 0.51%, respectively, from those obtained

using the asymptotic homogenization technique. The fact that the self-consistent

scheme gives accurate results for the homogenized material properties as well as the

macroscopic temperature and stresses has important implications for practical appli-

cations. The self-consistent scheme, which is easier to implement than the asymptotic

homogenization method, can lead to substantial time savings when analyzing large

random heterogeneous structures. The determination of stresses and failure at the

microstructural level would nevertheless require an accurate multiscale analysis for a

given random microstructure.

The factor of safety Fmacro
s (x) at each location within the W/Cu component is deter-

mined using failure envelopes for W/Cu similar to those presented earlier in Figures
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Figure 32: Comparison of temperature and macroscopic stress components using
AEH homogenization vs. the self-consistent scheme. Shown are a) temperature θ in
◦C and macroscopic stress components b) σ̄11, c) σ̄22 and d) σ̄12 in MPa.

4.7 and 4.8 for different volume fractions and temperatures. The lowest factor of

safety Fs = 2.09 occurs at critical location B with coordinates x1 = 0, x2 = 6.33

mm as shown in Figure 4.15. Said differently, the W/Cu component can withstand

a maximum 4.18 MW/m2 beyond which the microstresses at the critical location B

will be large enough to cause failure. It should be noted that the minimum factor of

safety does not occur at the location where the macroscopic stress σ̄11 is largest since

failure depends not only on the macroscopic stresses but also on the temperature

and local microstructure. Direct micromechanical failure analysis is performed at
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Figure 33: Contour plot of the factor of safety Fmacro
s for the W/Cu functionally

graded component. The minimum factor of safety occurs at the critical location B.

the critical location B for representative random microstructures with VCu = 0.278.

Three sample microstructures are shown in Figures 4.16(a), (c) and (e) and their

corresponding factors of safety at the microstructural level Fmicro
s (x,y) are shown in

Figures 4.16(b), (d) and (f), respectively. The minimum factors of safety occur in

the weaker Cu phase for all three sample microstructures. Despite the significant

differences between the three random microstructures, the minimum factors of safety

obtained at the microstructural level, namely 1.70, 2.13 and 2.33, are reasonably close

to the value of 2.09 that was obtained earlier using the failure envelopes.
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Figure 34: Three different sample RMDF microstructures at the critical location B
(VCu = 0.278) and the corresponding factors of safety Fmicro

s at the microscale. Shown
are a,b) sample I, c,d) sample II and e,f) sample III.
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CHAPTER 5

TRANSIENT MULTISCALE THERMOELASTIC ANALYSIS OF

FUNCTIONALLY GRADED MATERIALS

In this chapter, a methodology for the transient multiscale analyses of functionally

graded components is presented. The methodology is validated against results found

in the scientific literature to ensure that the multiscale procedure and macroscale

time integration methods are working properly. Once validated, the methodology

is demonstrated by performing transient failure analyses for two FGM problems,

each which possess a smooth variation of phase volume fraction and microstructure

morphology,

5.1 Microstructural Morphology Construction

Of interest in this work are two-phase functionally graded bodies with spatially vary-

ing microstructures, similar to the one shown in Figure 2.1. In order to proceed with

the multiscale analysis, the microstructural morphology over the RME domain y ∈ Y

must be known for all points in the macroscopic domain x ∈ Ω. To define the mi-

crostructural morphology, a MDF, similar in concept to the one implemented in (Cao

and Liu, 2006) and in Section 3.1, is utilized. Depending on the choice of MDF,

a wide range of microstructures corresponding to desired morphologies and phase

volume fractions can be created. The variation of the microstructural morphologies

over the domain Ω is specified by simply prescribing the macroscopic variation of the

phase volume fractions.

The morphology description function, f(y), is any periodic function in the RME

domain Y normalized in such a fashion that f(y) ∈ [0, 1]. Once a suitable MDF is

created, the next step in creating a microstructure is to choose a cutoff value fo that

lies in the range [0, 1]. All locations in the RME domain y ∈ Y where f(y) > fo

are assumed to be occupied material phase 1. Conversely, all locations in the RME
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where f(y) < fo are occupied by material phase 2. To compute the volume fraction

V1 of the first phase, one can use the formula

V1 =
1

|Y |

Z
Y

H (f(y)− fo) dY, (59)

where H (·) is the Heaviside step function. It is worth noting that the choice fo = 0

yields V1 = 1 and the selection fo = 1 gives V1 = 0. As there are only two material

phases and material voids are prohibited, the sum of the phase volume fractions must

always equal 1, i.e., V1 + V2 = 1.

5.2 Validation of Multiscale Analysis

In this section, the multiscale analysis code is verified by comparing the results with

those presented in the literature. The first validation problem, which will ensure that

the microscale finite element results are accurate, is a static multiscale analysis. The

second validation problem studied is a macroscopic transient heterogeneous material

problem which is used to verify the accuracy of the transient macroscale finite element

code.

5.2.1 Static Multiscale Analysis Validation Problem

In this first validation study, a multiscale analysis is performed for a boron/aluminum

(B/Al) heterogenous thin plate with a hole in the center. This problem has been

previously studied by Fish and Wagiman (1992) and Ghosh et al. (1995). The

Young’s modulus and Poisson’s ratio for the boron are E = 400.0 GPa and ν = 0.2,

respectively. For the aluminum, the Young’s modulus is taken to be E = 72.5 GPa

and the Poisson’s ratio to be ν = 0.33. Due to symmetry, only a quarter of the plate

is modeled as shown in Figure 5.1(a). The entire plate is of height 3.0 m, of width

2.2 m and has a central hole of radius 0.1 m. The plate is subjected to an in-plane

uniaxial traction of magnitude p = 1.0 Pa in the x2 direction. The finite element

mesh used for the macroscopic analysis, shown in Figure 5.1(b), consists
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Figure 35: Schematic of plate with central hole loaded in tension and corresponding
finite element mesh.

Figure 36: B/Al microstructure morphologies. Shown are a) short fiber and b) long
fiber morphologies.
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Method DH
11 (GPa) DH

22 (GPa) DH
12 (GPa) DH

33 (GPa)

AEH [Present Analysis] 122.29 151.03 36.30 42.07

Fish & Wagiman (1992) 122.46 151.35 36.19 42.11

VCFEM (Ghosh et al., 1995) 118.81 139.76 38.05 42.44

HOMO2D
(Ghosh et al., 1995)

122.40 151.20 36.23 42.10

Table 5.1. Comparison of the homogenized B/Al short fiber elastic constants obtained

from various methodologies.

of 8212 six-noded triangular (also called a linear strain triangle (LST)) elements.

The plate is analyzed using two distinct B/Al microstructures. First, a short fiber

morphology shown in Figure 5.2(a) of width and height is used, and second, a long

fiber morphology also of width and height shown in Figure 5.2(b). In each case the

microscale analyses are performed using a regular mesh of 3200 LST finite elements.

Lastly, it is important to note that in previous studies of this problem not only is the

macroscopic body in a state of plane-stress, it is also assumed that the material at

the microscale level is in a state of plane-stress. While this in general is not true, the

necessary modifications to the microscale finite element code are made for the sake

of comparison in this validation problem.

The first step in performing the multiscale analyses is to compute the homogenized

material properties. Table 5.1 compares the results for the homogenized elastic

constants DH
ij obtained using the AEH method of this work with the results of Fish

and Wagiman (1992) and also the properties using the Voronoi cell finite element

method (VCFEM) and two-dimensional (HOMO2D) code by Ghosh et al. (1995)

for the short fiber microstructure. As can be seen in the table, the results for the

homogenized elastic constants from the AEH method compare very well with those

from literature with the one possible exception being the VCFEM results, which uses

only four Voronoi cell finite elements. A similar comparison for the long fiber
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Method DH
11 (GPa) DH

22 (GPa) DH
12 (GPa) DH

33 (GPa)

AEH [Present Analysis] 136.14 245.81 36.08 46.85

Fish & Wagiman (1992) 136.15 245.81 36.08 46.85

VCFEM (Ghosh et al., 1995) 136.14 245.81 36.08 46.85

HOMO2D
(Ghosh et al., 1995)

136.10 245.80 36.08 46.85

Table 5.2. Comparison of the homogenized B/Al long fiber elastic constants obtained

from various methodologies.

microstructure is given in Table 5.2. For the long fiber case, the AEH results are

nearly identical to those provided by the other methods.

With the accuracy of the homogenized elastic constants established, a macroscopic

analysis is performed to obtain the displacements, strains and average stresses. Once

the macroscopic displacements u0i (x) have been computed, the interscale transfer

operator (25) is utilized to determine the stresses σ0ij(x,y) at the microscale. For

comparison, the results of Ghosh et al. (1995), which use the commercial finite

element package ANSYS at the macroscale and either the VCFEM or HOMO2D

methods at the microscale, are used. The dominant microstress component σ022(x,y)

at the critical macroscopic location x1 = 0.1 m, x2 = 0, namely the right most edge of

the hole, is shown in Figure 5.3. The tensile microstress in the y2 direction is plotted

along the width of the RME at locations along y2 = /2 for the short fiber case

in Figure 5.3(a). The AEH stresses compare very well with the analysis using the

HOMO2D microscale technique, and are similar to those generated with the VCFEM

microscale method. The one significant discrepancy occurs with the multiscale results

using the VCFEM microscale method in the regions surrounding the boundaries of

the Voronoi cell elements, which incidentally occur at the locations y1/ = 0.25,

0.75. However, as can be seen in the figure, the stress component in question is not

continuous using the ANSYS/VCFEM methodology at the Voronoi cell boundaries,
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Figure 37: Comparison of through-the-width trends in the microstress component
σ022 at the critical location x1 = 0.1 m, x2 = 0. Cases shown are a) the short fiber
case and b) the long fiber case.

as it should be. The AEH and ANSYS/HOMO2D techniques, which are in good

agreement, predict a continuous variation in the stress component σ022(x,y) with the

exception of the phase boundary, which is expected. A similar comparison is given

for the multiscale analysis using a long fiber microstructure in Figure 5.3(b). As can

be seen in the figure, all three of the methodologies compare very well.

5.2.2 Transient Macroscopic Functionally Graded Material Analysis Validation Prob-

lem

In the second validation study, a functionally graded aluminum/silicon carbide (Al/SiC)

thick plate subjected to a time-varying temperature increase on its top surface is in-

vestigated. The material properties for the phase materials is given in Table 5.3.

The exact solution for the plate, for which the loading, SiC volume fraction variation

VSiC and boundary conditions are shown in Figure 5.4, is given by Vel and Batra

(2003). Only one-half of the plate is modeled due to symmetry conditions, as shown

in Figure 5.4 by setting the longitudinal displacement u01(0, x2, t) = 0 and average

heat flux component q̄1(0, x2, t) = 0 on the left edge of the domain. The right edge

of the plate is simply supported, i.e. u02(0, x2, t) = 0. The two-dimensional plate,
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Figure 38: Schematic of loading, boundary conditions and volume fraction distribu-
tion for an Al/SiC functionally graded plate.

which is in a state of plane-strain, is of thickness H and of length L with L/H = 5.

The SiC phase volume fraction varies only through the thickness direction and is of

the form

VSiC(x) =
³x2
H

´2
. (60)

The temperature variation on the top surface is prescribed to be

θ0(x1, H, t) = T+
¡
1− e−t

¢
cos (2πx1/L) . (61)

The temperature θ0 is set to zero on the right and bottom edges of the domain. The

homogenized properties of the Al/SiC heterogeneous material for the macroscopic

analysis is obtained using the Mori-Tanaka method with metal as a matrix (Mori and

Tanaka, 1973; Benveniste, 1987) in order to compare the results with those presented

by Vel and Batra (2003). The Mori-Tanaka method requires only the phase volume

fractions to obtain the homogenized effective properties. The macroscopic analysis

is performed using a regular array of 2000 LST finite elements.
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Figure 39: Comparison between the exact and finite element solutions at selected
locations within the plate. Shown are a) normalized transient temperature variation
and b) normalized transient bending stress.

The plots for this validation study utilize three non-dimensional quantities, these

being

t̂ =
tκAl

CvAlρAlH
2
, T̂ =

θ0

T+
, σ̂11 =

σ̄11
EAlαAlT+

, (62)

where t̂ is the non-dimensional time, T̂ is the non-dimensional temperature difference

and σ̂11 is the non-dimensional bending stress component. The non-dimensional

temperature and bending stress are plotted as function of non-dimensional time in

Figure 5.5 for both the exact and macroscopic finite element solutions. The finite

element solution is generated using a non-dimensional time step of ∆t̂ = 0.001. As

is evident from Figure 5.5, the two solutions are nearly coincident, indicating that

the finite element approximation is fairly accurate. To further solidify the accuracy

of the macroscopic finite element analysis, through-thickness plots are compared at

the midspan of the plate at instant t̂ = 0.1. Figure 5.6 displays the non-dimensional

temperature and longitudinal stress as a function of x̂2 = x2/H for the exact solution

and finite element solution. Both compare very well with the error in the approximate

solution being 2.38% for the peak stress σ̂11 at x̂2 = 1.0 in Figure 5.6(b).
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Figure 40: Through-thickness trends in the normalized temperature and bending
stress at the normalized time t̂ = 0.1.

5.3 Multiscale Failure Analysis of Functionally Graded Material Components

In this section, two model problems are studied to illustrate the transient multi-

scale analysis of functionally graded materials. The first model problem is a tung-

sten/copper (W/Cu) beam with a spatially varying tungsten volume fraction sub-

jected to a time-varying heat flux on a portion of its top surface. The two-phase

W/Cu microstructures are created using a simplistic MDF that results in correspond-

ingly simple microstructures for the entire volume fraction range. In the second model

problem, a functionally graded titanium/zirconia (Ti/ZrO2) turbine blade geometry

with spatially varying volume fraction is studied. The Ti/ZrO2 microstructural mor-

phologies are created using a random MDF which results in fairly complex, realistic

microstructures that compare well with actual micrographs of heterogeneous materi-

als fabricated using plasma spraying or powder metallurgy.

5.3.1 Failure Analysis of a W/Cu Functionally Graded Component Subjected to a

Localized Heat Flux

Figure 5.7 depicts the geometry, volume fraction distribution and boundary conditions

for the W/Cu functionally graded component studied in this section. The material
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Figure 41: Schematic of loading, boundary conditions and volume fraction distribu-
tion for a W/Cu functionally graded specimen.

properties for tungsten and copper are given in Table 5.3. Only the right half of the

plane-stress body is modeled due to symmetry conditions, as shown in Figure 5.7.

The W/Cu specimen is of thickness 9.0 mm and length 32.0 mm. The bidirectional

grading consists of a 3.0 mm thick monolithic layer of tungsten on a portion of its

top edge, a 3.0 mm thick monolithic layer of copper along the bottom and right edges

and a linear variation of the volume fraction in between the monolithic layers. A

transient heat flux loading of the form

q̂(t) =

½
2.5 (1− t) MW/m2, 0 < t < 1 s
0, t > 1 s

(63)

is applied on the left 0.01 m of the top surface of the analysis domain as shown in

Figure 5.7.

The microstructures of the W/Cu heterogeneous material are created using the MDF

method described earlier. The particular MDF chosen for the model problem consid-

ered here is

f(y) =
1

4

∙
2− cos

µ
2πy1

¶
− cos

µ
2πy2

¶¸
. (64)
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Material
Property

Al SiC W Cu

κ (W/mK) 233.0 65.0 163.3 385.0

E (GPa) 70.0 427.0 400.0 110.0

ν 0.3 0.17 0.28 0.34

α (10−6/K) 23.4 4.3 4.4 16.4

ρ (kg/m3) 2707 3100 19300 8960

Cv (J/kgK) 896.0 670.0 134.0 385.0

Sy (MPa) − − 1352.2 296.3

Table 5.3. Properties of selected materials considered in the present chapter.

A two-dimensional surface plot of the MDF over the RME domain is shown in Figure

5.8(a). Using equation (59), a relationship between a desired phase volume fraction

and the corresponding cutoff value fo is easily constructed. Microstructural mor-

phologies corresponding to tungsten volume fractions of VW = 0.05, 0.40, 0.50 and

0.75 are displayed in a ‘tiled’ 2 × 2 format in Figures 5.8(b)-(e), respectively. A

sample finite element mesh corresponding to the microstructure with VW = 0.05 is

shown in Figure 5.8(f). It consists of approximately 3200 LST elements. The ho-

mogenized material properties for the series of W/Cu heterogeneous microstructures

created using the MDF (64) are plotted in Figure 5.9 as a function of the tungsten

volume fraction. A steep variation in the material properties occurs at a volume

fraction of VW = 0.5 for the homogenized thermal conductivity κH11, Young’s modulus

EH
11, Poisson’s ratio νH12 and thermal expansion coefficient αH

11. This is due to the fact

that this particular volume fraction represents the point of percolation for the chosen

MDF, or in other words, the point at which the tungsten transitions from being the

particulate phase to becoming the matrix phase. The morphologies shown earlier in

Figure 5.8 help illustrate this concept.
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Figure 42: Microstructure morphology and analysis mesh used for the W/Cu hetero-
geneous material. Shown are a) morphology description function, b)-e) morphologies
for volume fractions of VW = 0.05, 0.4, 0.5 and 0.75 respectively and f) finite element
mesh for VW = 0.05.
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Figure 43: Homogenized properties for the W/Cu microstructures as a function of
VW. Shown are a) thermal conductivity, b) Young’s and shear moduli, c) Poisson’s
ratio and d) thermal expansion.

A transient finite element analysis is performed using a regular array of 2592 LST

finite elements at the macroscopic level with a time step of ∆t = 0.0005 seconds. A

direct micromechanical failure analysis is performed at each time step. The factor

of safety against initial material failure is plotted in Figure 5.10. The minimum

factor of safety Fs over the specimen is given as a function of time in Figure 5.10(a).

The minimum value of Fs = 2.05 occurs at t = 0.475 seconds. The x1 and x2

coordinates of the location of the minimum Fs in the beam as a function of time are

given in Figure 5.10(b). As can be seen from the figure, the critical location in the
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Figure 44: Transient factor of safety Fs, coordinates of critical location for the W/Cu
functionally graded beam and a graphical depiction of critical locations.

beam changes as function of time. The minimum factor of safety occurs at point

A from 0 < t < 0.008 s as well as 0.016 s < t < 0.154 s and it changes to point B

at instants 0.008 s < t < 0.016 s. The critical locations are shown graphically in

Figure 5.10(c). The location of the minimum factor of safety Fs = 2.05 at t = 0.475

seconds occurs at x1 = 0.5 mm, x2 = 4.5 mm which is denoted as point C in Figure

5.10(c). The volume fractions at point C are VW = VCu = 0.5 which correspond to

the checkerboard microstructure of Figure 5.8(d).
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Figure 45: Various field variable trends at the critical location C. Shown quantities
include a) transient temperature, b) transient average stress σ̄22 and corresponding
minimum and maximum microstress components, c) transient average effective stress
σ̄eff and corresponding maximum microstress components and d) factor of safety
Fmacro
s at A and C vs. the factor of Fs.

To further emphasize the wealth of information provided by a multiscale analysis,

transient trends at the critical location C are presented in Figure 5.11. Figure

5.11(a) shows the temporal variation of the temperature at point C. Figures 5.11(b)

and (c) depict the macroscopic, or averaged stress component σ̄22 and von Mises stress

σ̄eff , respectively, along with the minimum and maximum corresponding microstress

component in the respective copper and tungsten microstructure domains YCu and

YW. Figure 5.11(d) shows the factor of safety curve of Figure 5.10(a) along with
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the curve for Fmacro
s for points A and C. Referring to Figures 5.11(b) and (c), it is

clear that the maximum and minimum microstress components occurring over the mi-

crostructure can be much larger than their corresponding macroscopic counterpart.

In addition, one can conclude from Figures 5.11(a)-(c) that the macroscopic tem-

perature variation has a significant influence on the microstresses as the microstress

magnitudes are approximately proportional to the temperature increase θ0 for this

particular thermoelastic multiscale problem. It is also evident from the figures that

stress concentrations in the checkerboard microstructure at this location magnify the

peak microstress components a great deal as the macroscopic temperature and stress

components are all relatively small while the peak microstresses are very large. More

specifically, the peak von Mises microstress component in the tungsten phase is 533.9

MPa while the corresponding macroscopic von Mises stress at the same time t is only

8.14 MPa. A further point which should be emphasized is that even though the

W/Cu component is in a state of plain stress at the macroscopic level, and hence

σ̄33 = 0 for all time, the microstress components σ033 need not be zero. During

the transient, the maximum microstress component σ033 in the tungsten and copper

phases reaches 239.6 MPa and 31.6 MPa, respectively. Lastly, the factor of safety

Fmicro
s at point C at t = 0.475, as well as two corresponding microstress components,

are plotted over the entire microstructure in Figure 5.12. Figure 5.12(a) depicts

the variation of σ011 over the microstructure, the peak value being 563.0 MPa. The

microstress component σ012 is plotted over the microstructure in Figure 5.12(b). In

both Figures 5.12(a) and (b), it is evident that the sharp phase material interfaces

created by the checkerboard pattern microstructure give rise to very significant stress

concentrations in the microstress fields. As can be seen in Figure 5.12(c), the factor

of safety Fmicro
s is small in very localized regions and is much larger for a majority of

the microstructure which is logical in light of the stress fields given in Figures 5.12(a)

and (b). This indicates that as the macroscopic loads are increased beyond the point
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Figure 46: Distribution of field quantities over the microstructure at the critical
location C at t = 0.475 s. Shown are a) microstress σ011 in MPa, b) microstress σ012
in MPa and c) factor of safety Fmicro

s .

99

goupeea1
Stamp

goupeea1
Rectangle



where the minimum of Fmicro
s , that is Fmacro

s , is equal to 1.0, yielding and damage

will occur only in very small regions of the microstructure. This indicates that the

methodology presented here is rather conservative and that at loads which give rise

to a Fmacro
s less than 1.0, the two-phase microstructures are likely to still exhibit a

significant amount of additional load carrying capacity.

5.3.2 Failure Analysis of a Ti/ZrO2 Functionally Graded Material Turbine Blade

The second model problem considered in this work is a Ti/ZrO2 functionally graded

turbine blade component. This model problem incorporates a range of additional

complexities including a more realistic component geometry, microstructures which

closely resemble actual random heterogeneous materials and lastly, phase materials

with temperature dependent material properties. A schematic of the geometry, load-

ing and grading architecture for the turbine blade is given in Figure 5.13(a). The

turbine blade grading consists of a monolithic outer 0.5 mm layer of zirconia, a tita-

nium inner core surrounding each of the three inner cooling channels with a minimum

thickness of 0.5 mm, and a linear variation of the volume fraction VZrO2 between the

two monolithic regions computed using the distance fields method (Biswas et al.,

2004). As for the thermal loading, the inner surfaces are held at the reference tem-

perature of 300 K (θ = 0 K) and the temperature of the outer surface is prescribed

to increase rapidly by 100 K as follows

θ0(t) = 100
¡
1− e−10t

¢
K, t > 0. (65)

The blade, which is assumed to be in a state of plane stress at the macroscale, is

analyzed using a mesh of 2414 LST finite elements as shown in Figure 5.13(b). The

time step utilized in the time integration scheme is ∆t = 0.005 seconds.

For the second model problem, a more complex MDF is employed to create the

microstructure morphologies. More specifically, a particular choice of random MDF

borrowed from Section 3.1, is used which creates realistic microstructures across the
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Figure 47: Schematic of loading, boundary conditions and volume fraction distribu-
tion for a Ti/ZrO2 turbine blade and corresponding finite element mesh.
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Figure 48: Microstructure morphology and analysis mesh used for Ti/ZrO2 het-
erogeneous material. Shown are a) random morphology description function, b)-e)
morphologies for volume fractions of VZrO2 = 0.05, 0.4, 0.5 and 0.75 respectively and
f) finite element mesh for VZrO2 = 0.05.
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entire volume fraction spectrum. The random MDF used in the present model

problem is

f̄(y) =
800X
i=1

cie
−800

⎡⎣(y1−y(i)1 )2+(y2−y(i)2 )2
2

⎤⎦
, (66)

where the coefficients ci ∈ [−1, 1] and locations (y(i)1 , y
(i)
2 ) ∈ Y are chosen randomly.

The MDF f̄(y) is normalized to lie in the range 0 to 1 to create the modified MDF

f(y) and is shown in Figure 5.14(a). By varying the cutoff fo, a variety of realistic

microstructures can be created, as evidenced by the morphologies shown in Figures

5.14(b)-(e). For cases when the phase volume fractions are quite distinct, a partic-

ulate in matrix microstructure arises as seen in the morphologies of Figures 5.14(b)

and (e). When the volume fractions are similar in magnitude as they are in Figure

5.14(d), an interconnected skeletal microstructure is created with no distinct matrix

or particulate phases, known as an interpenetrating phase composite (e.g. see (Weg-

ner and Gibson, 2001; Feng et al., 2004)). The Ti/ZrO2 microstructures are analyzed

using approximately 5, 000 to 6, 000 LST elements depending on microstructural in-

tricacy, an example mesh of which is shown for the VZrO2 = 0.05 microstructure

of Figure 5.14(b) in Figure 5.14(f). The material properties for the titanium and

zirconia phases are temperature dependent and are given in Table 5.4. The ho-

mogenized thermoelastic properties at three different temperatures for the Ti/ZrO2

random composite obtained via the AEH method are given in Figure 5.15.

A transient multiscale analysis of the Ti/ZrO2 functionally graded turbine blade with

random microstructures of Figure 5.14 yields the macroscopic temperatures, displace-

ments, average stresses and microstresses. A direct micromechanical failure analysis

is performed to obtain the minimum factor of safety over the domain. As can be seen

in Figure 5.16(a), the factor of safety Fs drops rapidly to a value of approximately 5

within the first half a second and then continues to gradually decrease as the steady

state is approached. A near steady state factor of safety value of Fs = 2.72 is ob-
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Material
Property

Ti ZrO2

κ (W/mK) 1.1 + 0.017T
1.71 + 0.21× 10−3T
+0.116× 10−6T 2

E (GPa) 122.7− 0.0565T 132.2− 50.3× 10−3T
−8.1× 10−6T 2

ν 0.2888 + 32× 10−6T 0.333

α (10−6/K)
7.43× 10−6 + 5.56× 10−9T

−2.69× 10−12T 2
13.31× 10−6 − 18.9× 10−9T

+12.7× 10−12T 2

ρ (kg/m3) 4, 420.0 5, 700.0

Cv (J/kgK)
350.0 + 0.878T − 0.974× 10−3T 2

+0.443× 10−6T 3
274.0 + 0.795T
−0.619× 10−3T 2
+0.171× 10−6T 3

Sy (MPa) 1, 252.0− 0.8486T −

Sut (MPa) − 148.1 + 1.184× 10−3T
−31.4× 10−6T 2

Suc (MPa) − 3, 181.2 + 25.43× 10−3T
−0.675× 10−3T 2

Table 5.4. Material properties for functionally graded turbine blade, T in Kelvin.

tained at the end of the analysis at t = 10.0 s. Referring to Figure 5.16(b), which

shows the coordinates of the critical location in the blade as a function of time, it

is noted that the critical location varies within the functionally graded component

up until t = 0.820 s at which point the location x1 = 42.5 mm, x2 = 16.4 mm

(which will be denoted as point D) becomes the critical location for the remainder

of the transient. At t = 0+, the critical location occurs within the outer monolithic

zirconia layer of the turbine blade. At t = 0.055 s, the critical location moves into the

graded region of the blade and transitions from the VZrO2 = 1.0 outer monolithic layer

through successively smaller zirconia volume fractions before coming to rest at the

aforementioned point D which has a volume fraction of VZrO2 = 0.53. The trajectory

of the critical location is shown graphically in Figure 5.16(c).
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Figure 49: Homogenized material properties for the Ti/ZrO2 microstructures as a
function of VZrO2. Properties shown are a) thermal conductivity, b) Young’s and
shear moduli, c) Poisson’s ratio and d) thermal expansion.

For further analysis, detailed transient information is given for point D in the func-

tionally graded turbine blade and is presented in Figure 5.17. Figure 5.17(a) shows

the transient temperature change θ0 at point D which monotonically increases with

a near steady-state value of 64.42 K at t = 10.0 s. Transient stress profiles are given

in Figures 5.17(b) and (c). Figure 5.17(b) depicts the variation of the macroscopic

component σ̄11 at D as a function time t as well the corresponding maximum and

minimum microstress components σ011 in the titanium and zirconia phases of the mi-

crostructure. The maximum macroscopic stress σ̄11 occurs during the transient at
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Figure 50: Transient factor of safety Fs, coordinates of critical location for the
Ti/ZrO2 functionally graded turbine blade and graphical depiction of critical location
trajectory.

t = 1.00 s with a value of 12.01 MPa. However, with the exception of the curve for

the maximum σ011 in the titanium phase, the magnitude of the three other microstress

is largest at the steady state, which is also the case for the maximum temperature

change value θ0, as discussed previously. This indicates that the temperature increase

θ0 is the dominant influence on the microstress components. To help quantify the

effect of temperature increase on microstress magnitude, it is noted that at t = 1.00 s

θ0 = 8.02 K and the peak microstress component σ011 in the entire microstructure at

D is 18.47 MPa yielding a peak stress concentration factor of max(σ011)/σ̄11 = 1.54.
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Figure 51: Various field variable trends at the critical location D. Quantities shown
include a) transient temperature, b) transient average stress σ̄11 and corresponding
minimum and maximum microstress components, c) transient average stress σ̄12 and
corresponding minimum and maximum microstress components and d) factor of safety
Fmacro
s at C vs. the factor of safety Fs.
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At t = 10.0 s, where θ0 = 64.42 K at D, which is 8.03 times the value at t =

1.00 s, the peak stress concentration factor is also increased by approximately a

factor of eight with the value max(σ011)/σ̄11 = 11.33. The importance of increase

in temperature from the reference state on the microstress component magnitudes

is also borne out in Figure 5.17(c) which shows the transient macroscopic stress σ̄12

at D and the corresponding minimum and maximum microstress components σ012 in

both material phases of the microstructure. In Figure 5.17(c), similar to the trends in

5.17(b), the variation between the maximum and minimum microstress components

and the averaged or macroscopic stress increases approximately in proportion to the

magnitude of the temperature difference θ0. However, while θ0 has a significant

impact on the microstress magnitudes and hence, the failure of the two-phase material,

it is not the only factor. There are large areas of the turbine blade of Figure 5.13(a)

with higher temperatures than point D during the transient and steady-state in the

graded region, however, it is point D that is the critical location in the body as shown

by the comparison of the factor of safety Fs and factor of safety Fmacro
s at point D

in Figure 5.17(d). This indicates that while temperature increase θ0 is an important

factor influencing failure of the two-phase material, microstructural morphology is

also of great importance. Figure 5.18 shows two of the microstress components,

namely σ022 and σ033, as well as the factor of safety Fmicro
s over the microstructure

at the critical location D at t = 10.0 s. The microstress component σ022 in Figure

5.18(a) exhibits a complex variation with a number of local stress concentrations.

The microstress component σ033 shown in Figure 5.18(b), however, is not as complex.

Nonetheless, σ033 is significant in magnitude even though the macroscale problem is

being analyzed in state of plane stress. The Fmacro
s value at the macroscopic location

D at t = 10.0 s is 2.72, as noted earlier as can be seen by the minimum value of the

Fmicro
s plot given in Figure 5.18(c). It is also worth noting in Figure 5.18(c) that

the zirconia regions of the random microstructure possess low factors of safety Fmicro
s
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Figure 52: Distribution of field quantities over the microstructure at the critical
location D at t = 10.0 s. Shown are a) microstress σ022 in MPa, b) microstress σ033 in
MPa and c) factor of safety Fmicro

s .
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whereas the regions of titanium material exhibit significantly higher factors of safety,

indicating that the zirconia is the critical phase for the conditions at point D.

The multiscale analysis reveals that the combination of the moderately high temper-

ature θ0, microstructural morphology and, to a lesser extent, the macroscopic stress

state create a critical location in the turbine blade at point D where Fmacro
s is a min-

imum. The multiscale approach presented here provides detailed information about

the macroscopic and microscopic stresses and enables a direct micromechanical failure

analysis, which is invaluable in analysis and design applications.
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CHAPTER 6

THE ROLE OF ROCK FABRIC IN SEISMIC WAVE SPEED

ANISOTROPY

In this chapter, the role of key rock fabric features on seismic wave speed anisotropy

is investigated. Recall from Chapter 1 that the concept of seismic anisotropy es-

sentially indicates an existence of a wave speed velocity dependence on propagation

direction. To begin the investigation, parametrized, synthetic quartz/muscovite rock

fabric microstructures are created and their wave speed velocities are determined us-

ing homogenized elastic stiffnesses obtained via the AEH method. The AEH stiffness

derived wave speeds for polycrystalline rock fabrics, such as the one shown in Figure

6.1, are compared to wave speed velocities determined from analytic homogenization

schemes commonly used in the geophysical community. Lastly, a parametric study is

performed using the synthetic rock fabric microstructures in order to determine the

influence of rock fabric features on seismic wave speed anisotropy.

6.1 Analytic Bounds and Estimates

Primarily for comparison purposes, a few of the common homogenization bounding

methods and analytic estimation methods are presented here. These include the Voigt

(1928) (upper) and Reuss (1929) (lower) bounds as well as the geometric (Matthies

and Humbert, 1993) and arithmetic (Hill, 1952) mean, the formulae for which are

presented in the remainder of this section.

To compute the Voigt bound it is assumed that the strain is constant throughout the

entire microstructural domain Y , which of course, is not true in general. Nonethe-

less, the result is that the homogenized elastic constants are essentially the volume

averaged elastic constants of the rock fabric constituents. Expressed in integral form,

the Voigt bound CV
ijkl is
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Figure 53: Schematic of relationship between macroscale, periodic rock fabric and
microstructure base cell.

CV
ijkl =

1

|Y |

Z
Y

Cε
ijkldY, (67)

where Cε
ijkl are the spatially varying elastic stiffnesses and |Y | is the volume of the

microstructural domain. Conversely, the Reuss bound assumes that the stress is

constant throughout the entire microstructural domain which is also unlikely in most

physically realistic cases. However, assuming an isostress state, the Reuss bound

CR
ijkl is computed with the formula

CR
ijkl =

⎛⎝ 1

|Y |

Z
Y

Sε
ijkldY

⎞⎠−1 , (68)

where Sε
ijkl = Cε−1

ijkl are the spatially varying compliances within the rock fabric mi-

crostructure. As the Voigt and Reuss estimates represent the respective upper and

lower bounds of the homogenized elastic constants, it stands to reason that a sim-
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plistic means of obtaining a better estimate between the bounds is to simply average

them. The average of CV
ijkl and CR

ijkl yields the arithmetic mean CV RH
ijkl , also known

as the Voigt-Reuss-Hill estimate. It should be noted, however, that there is no

legitimate mathematical justification for performing this averaging scheme (e.g. see

(Mainprice and Humbert, 1994)). The last estimate to be discussed is the geometric

mean which imposes the constraint that homogenized elastic stiffnesses be equal to

the inverse of the homogenized elastic compliances, which is not true in the instance

of the Voigt and Reuss bounds, for example. Computation of the geometric mean in

contracted notation, DG
PQ, is performed as follows:

DG = e

⎡⎢⎢⎣ 1|Y |
Z
Y

ln(Dε)dY

⎤⎥⎥⎦
, (69)

where Dε
PQ is the the 6 × 6 engineering contracted form of Cε

ijkl and e(·) and ln(·)

indicate the matrix exponential and matrix logarithm, respectively (e.g. see (Horn

and Johnson, 1999)). As expected, the geometric mean lies between the upper and

lower bounds. However, like all of the other estimates presented in this section, the

geometric mean depends only on the relative volume fraction and orientation of the

polycrystals comprising the rock fabric and has no means to account for the elastic

interplay between polycrystals. AEH, on the other hand, does account for this effect

which can have a significant influence on the homogenized elastic constants computed,

and hence, the wave speed velocities traveling through the bulk rock.

6.2 Computation and Characterization of Seismic Anisotropy

In this section, the determination of the three wave speed velocities in an unbounded

rock media is presented first. Subsequently, measures of seismic anisotropy are

presented which help characterize the dependence of the wave speed velocities on

propagation direction.
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6.2.1 Wave Propagation in Unbounded Media

The details of computing the wave speed velocities in the homogenized anisotropic

rock media are now outlined. For the purposes of this work, a solution is sought for

wave speeds in unbounded media, which is common when studying waves propagating

through Earth’s crust where the wavelength is much larger than the geologic feature.

In this scenario it is common to represent the rock fabric as a homogenized media,

which as mentioned previously, is the case in this work. One begins the process of

determining the wave speeds with the equations of motion written in terms of the

macroscopic displacements and homogenized material properties, which is

CH
ijkl

∂2u
(0)
k

∂xl∂xj
= ρH

∂2u
(0)
i

∂t2
. (70)

A plane wave solution is sought for (70) and is of the form

u
(0)
i (x, t) = aif

³
t− njxj

V

´
, (71)

where ai are displacement amplitudes, ni are components of the unit vector that

defines the direction of wave propagation at the speed V and f(·) is an arbitrary

function that defines the wave form. Inserting (71) into (70) and noting that the

second derivative of f(·) need not be zero as f(·) is arbitrary eventually leads to the

Christoffel equation (Christoffel, 1877),

£
CH
ijklnjnl − ρHV 2δik

¤
ak = 0, (72)

where δik is the Kronecker delta. The Christoffel equation (72) represent an eigen-

value problem where ρHV 2 are the eigenvalues and ak are the corresponding eigen-

vectors, also called polarization vectors. The solution of (72) (e.g. see (Auld, 1990))

yields three real eigenvalues, and hence, three real wave speeds V , one P -wave whose

normalized eigenvector is similar to the propagation direction and two, typically

smaller magnitude S-waves with polarization directions approximately orthogonal
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to the propagation direction. For the purposes of this work, the P -wave will be

denoted as VP and the two S-waves as VS1 ≥ VS2.

6.2.2 Measures of Seismic Anisotropy

Once the homogenized elastic stiffnesses have been obtained, the investigation of seis-

mic anisotropy in rock fabrics can be conducted. Recall that the concept of seismic

anisotropy is the phenomena where the wave speed velocities are dependent on the

propagation direction n. In addition to studying the effects of varying n on the

various wave speeds V directly other seismic anisotropy measures generated from

these wave speeds will also be investigated. These measures distill trends found in

directional wave speed information into a few simple, easy to understand and physi-

cally meaningful quantities which facilitate the study of seismic anisotropy. A brief

discussion of the computation and significance of these measures is now presented.

For the results presented in future sections the propagation directions investigated

will lie in the y1−y3 plane and will be oriented using the incidence angle γ, this being

the angle between the propagation direction and the y3 axis. Thus, n can be written

as

nT =
£
sin γ 0 cos γ

¤
. (73)

A schematic of propagation direction is given in Figure 6.2. For use in the proceeding

outline, a plot of the three wave speeds as a function of the incidence angle γ are shown

in Figure 6.3 for the Haast Schist (Okaya and Christensen, 2002). The bulk elastic

stiffness of the Haast Schist, obtained through petrophysical measurements (Okaya

and Christensen, 2002) are used to obtain the wave speeds at different incidence

angles. The first measure of interest is the P -wave speed anisotropy (Birch, 1960)

which is computed using the formula

AP =

¡
V max
P − V min

P

¢
1
2
(V max

P + V min
P )

× 100%, (74)
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Figure 54: Illustration of propagation direction n as defined by the incidence angle
γ.

where V max
P and V min

P are the maximum and minimum values of VP (γ) computed over

the entire range of angles γ, respectively. For the Haast Schist wave speed plot in

Figure 6.3, AP would be computed using points B (V min
P ) and D (V max

P ) with a final

result of AHS
P = 12.75%. As can be seen in the figure, AP is a normalized measure

of the spread in the possible VP (γ) velocities over the range of incidence angles. For

an isotropic material AP = 0, yet, for anisotropic materials, AP can be quite large

depending on the severity of the rock fabric anisotropy. In addition to AP , a S-wave

speed anisotropy, AS, is also of interest (Birch, 1960). The formula for this seismic

wave speed anisotropy measure is

AS =

¡
V max
S − V min

S

¢
1
2
(V max

S + V min
S )

× 100%, (75)

V max
S being the maximum of VS1 (γ) (Point F for the Haast Schist of Figure 6.3)

and V min
S being the minimum of VS2 (γ) (Point E for the Haast Schist of Figure 6.3).

Similar to AP , AS = 0 for isotropic materials. For the Haast Schist, AHS
S = 16.49%.

As for other materials, petrophysical data show that crustal foliated rocks such as
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Figure 55: Wave speeds for the Haast Schist as a function of incidence angle γ (Okaya
and Christensen, 2002).

schists, gneisses and amphibolites can possess AP as high as 17 to 20% (20.5% for

the Poultney slate, Vermont) and AS as high as 25 to 30% (37.4% for the Poultney

slate, Vermont) (Christensen, 1956; Christensen, 1966; Godfrey et al., 2000).

Another seismic anisotropy characteristic of interest to the seismic community is the

magnitude of VP (45◦) relative to VP (γ) at γ = 0◦ and at γ = 90◦. This is often

termed the VP -45 effect. It is of interest since VP (45◦) is rarely the average of VP (0◦)

and VP (90
◦) for real rock fabrics, even though it often assumed to be. To study the

VP -45 effect, a normalized VP (45
◦) (Okaya and Christensen, 2002) is computed as

νP45 =
(VP (45

◦)− VP (0
◦))

(VP (90◦)− VP (0◦))
× 100%, (76)

which for the Haast Schist curves in Figure 6.3 would involve points A, C and D.

As mentioned previously, VP (45◦) is often assumed to be the average of VP (0◦) and

VP (90
◦) which would give a νP45 of 50%. As proof that this is not necessarily true

for real rock fabrics, the Haast Schist exhibits a normalized νP45 of 17.44%.
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In addition to the aforementioned measures of seismic anisotropy, two other parame-

ters will also be investigated. The first is termed the P -delay which is computed

as

∆tP (γ) =
1

VP (γ)
− 1

V max
P

. (77)

The P -delay quantity computed in (77) has units of time per unit length and measures

the delay in time required by a P -wave to travel a unit distance (usually a kilometer)

relative to the time the maximum P -wave velocity V max
P takes to cover the same unit

distance as a function of incidence angle. The last measure of seismic anisotropy to

be investigated is the S-split,

∆tS (γ) =
1

VS2 (γ)
− 1

VS1 (γ)
, (78)

which also has units of time per unit length. The quantity ∆tS (γ) measures the

difference in time for the two S-waves to cover a unit distance as a function of incidence

angle. As expected, both ∆tP (γ) and ∆tS (γ) are zero for isotropic materials at all

possible angles γ. However, realistic rock fabrics rarely possess isotropic material

symmetry and hence display unique trends in the P -delay and S-split curves.

6.3 Creation of Synthetic Quartz/Muscovite Rich Rock Microstructures

As mentioned earlier, the aim of this work is to investigate the effects of rock fabric

features on seismic anisotropy. In order to accomplish this task, one might consider

analyzing various actual rock fabric microstructure micrographs using image-based

meshing and numerical homogenization techniques (e.g. see (Langer et al., 2001)).

However, it is difficult to thoroughly investigate the entire range of fabric possibilities

in this manner. Therefore, in this work, the role of various rock fabric features on

seismic wave speed anisotropy is studied using synthetic rock fabric geometries which

exhibit the prescribed morphological characteristics. Note that the term synthetic

merely indicates that the rock fabric geometries are not copies of actual micrographs,
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Figure 56: Beginning of base cell of sample synthetic microstructure showing grid of
quartz crystals and completed synthetic microstructure with rectangular muscovite
inclusions yielding a muscovite volume fraction of 0.2.

but are generated automatically by a computer program based on some parameters

such as volume fraction and grain orientation.

In order to focus this study, only rock fabrics comprised of quartz and muscovite are

considered. Quartz is a trigonal material with mild elastic anisotropy and muscovite

is a monoclinic material with strong elastic anisotropy. Muscovite is typically present

in sheets with the material axis perpendicular to the plane of the sheet being very

compliant relative to the stiffnesses in the plane of the sheet. In an effort to model

potentially high anisotropy quartz/muscovite rock fabrics in a simple fashion, syn-

thetic quartz/muscovite rock fabrics are created and parametrized in such a fashion

that the only geometry parameters investigated are muscovite volume fraction and

muscovite grain orientation distribution. To create the synthetic microstructures,

first a background of similarly sized hexagons is placed over the base cell, of length

Y1 and height Y2, as shown in Figure 6.4(a). These hexagons represent the quartz

grains, each with its own particular material orientation. The orientations, which

are denoted by varying quartz grain colors, may be all identical or each randomly
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oriented (as they are in Figure 6.4) in this study. This will allow the exploration

of fabrics with essentially an isotropic behaving quartz matrix phase as well as the

extremes of highly ordered quartz grains. To complete the microstructure, a series of

slender rectangles of length a and thickness b, which represent the muscovite grains,

are overlaid at random locations over the grid of hexagons until the desired mus-

covite volume fraction is achieved as shown in Figure 6.4(b). The muscovite grains

are oriented with a mean angle of zero degrees with respect to the y1 axis plus or

minus a given standard deviation angle α. In other words, approximately 68% of

the muscovite inclusions are oriented within ±α of the y1 axis and over 99% of the

inclusions are oriented within ±3α of the y1 axis. For the rock fabric microstructure

in Figure 6.4(b), the muscovite volume fraction is VM = 0.2 and the muscovite grain

distribution standard deviation parameter is α = 10.0◦. Note that if α = 0◦, a planar

foliation of the muscovite grains is formed. As for the material orientation of the

muscovite, the compliant material axis is always oriented perpendicular to the long

axis of the muscovite grain. The other two stiff material axes are randomly oriented

about the axis perpendicular to the long axis of the muscovite grain. The color of

the grains indicates the angle of rotation of the stiff axes about the aforementioned

perpendicular axis from the reference material configuration. Prior to proceeding,

it should be noted that the rock fabric geometries created here are periodic as is re-

quired by the AEH method. In other words, if the synthetic microstructure is ’tiled’

repeatedly to create a larger sample of the microstructure, there is no discontinuity in

the geometric features from one instance of the microstructure to another, as shown

in Figure 6.1.

The final step in creating a synthetic microstructure that can be homogenized to

find the effective elastic constants is to determine the elastic constants of each of the

quartz and muscovite grains in the analysis frame y. To begin this process, it is first

noted that the orthonormal base vectors of the analysis frame y are esi . Each crystal
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has its own unique material symmetry axis denoted by a separate set of orthonormal

base vectors ecj. For each crystal the direction cosines aij are constructed by taking

the dot products of the combinations of ecj and esi , i.e.,

aij = e
s
i · ecj. (79)

Since both the crystal and reference base vectors are of unit length, aij represents

the cosine of the angle between the vectors ecj and esi . With aij computed, the Bond

transformation matrix (Bond, 1943) M can be constructed as

M =

⎡⎢⎢⎢⎢⎢⎢⎣
a211 a212 a213 2a12a13 2a13a11 2a11a12
a221 a222 a223 2a22a23 2a23a21 2a21a22
a231 a232 a233 2a32a33 2a33a31 2a31a32

a21a31 a22a32 a23a33 a22a33 + a23a32 a21a33 + a23a31 a22a31 + a21a32
a31a11 a32a12 a33a13 a12a33 + a13a32 a13a31 + a11a33 a11a32 + a12a31
a11a21 a12a22 a13a23 a12a23 + a13a22 a13a21 + a11a23 a11a22 + a12a21

⎤⎥⎥⎥⎥⎥⎥⎦ .
(80)

The Bond transformation matrix is used to obtain the crystal properties in the analy-

sis reference frame y via the relation

Dε
PQ =MPRMQSDRS, (81)

where DRS is contracted form of the grain stiffness in its symmetry axis Cijkl and

Dε
PQ is the stiffness tensor for the grain in the analysis frame y. The contracted

notation stiffness tensors used for the quartz and muscovite in this work are (Bass,

1995)

DQuartz =

⎡⎢⎢⎢⎢⎢⎢⎣
86.6 12.6 6.7 17.8 0 0

106.1 12.6 0 0 0
86.6 −17.8 0 0

57.8 0 0
Sym. 39.95 17.8

57.8

⎤⎥⎥⎥⎥⎥⎥⎦ GPa,

DMuscovite =

⎡⎢⎢⎢⎢⎢⎢⎣
184.3 48.3 23.8 0 −2.0 0

178.4 21.7 0 3.9 0
59.1 0 1.2 0

16 0 0.5
Sym. 17.6 0

72.4

⎤⎥⎥⎥⎥⎥⎥⎦ GPa.

(82)
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Note that the values given are for grains whose symmetry axes are aligned with the

analysis axes.

6.4 Results for the Seismic Anisotropy of Quartz/Muscovite Rock Fabrics

The first portion of this section will compare the seismic wave speeds computed from

the AEH results with those generated from the other homogenization schemes in Sec-

tion 6.1 for the synthetic rock fabric microstructures. Subsequently, a comprehensive

parametric study will be performed to assess the roles of muscovite volume fraction,

muscovite crystal orientation distribution and quartz crystal orientation on seismic

anisotropy of quartz/muscovite rich rock fabrics using the aforementioned synthetic

rock fabric microstructures. In all of the following sections, all results are gener-

ated using synthetic microstructures which possess 30 distinct quartz grains and have

muscovite inclusions with dimensions a = 0.4 and b = 0.05 . All homogenized

stiffness tensors, which are required for computing the wave speeds, are generated via

an ensemble average of 100 distinct realizations of the synthetic microstructures for a

particular set of parameters. This is done in lieu of analyzing a single, large, detailed

microstructure with the same fabric description parameters as it is computationally

more efficient and provides the same homogenized stiffness tensor as discussed in Sec-

tion 3.3. With regard to number of finite elements employed in each AEH analysis,

let us first briefly investigate the convergence of the wave speed velocities with mesh

refinement for a sample microstructure. Table 6.1 displays the convergence of seven

particular wave speeds in km/s for a sample microstructure with VM = 0.3, α = 10◦

and all quartz grains randomly oriented. As can be seen in the table, even the small-

est mesh shown yields very good estimates for each of the wave speeds tabulated.

For microstructures with the aforementioned volume fraction and muscovite inclu-

sion distribution parameters, the analyses presented in the following sections utilize

approximately 2, 000 to 2, 500 LST finite elements. As can be inferred from Table

6.1, this is a sufficient level of refinement. Therefore, to ensure good accuracy,
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No. of
Elements

VP (0
◦) VP (45

◦) VP (90
◦) VS1(0

◦) VS1(90
◦) VS2(0

◦) VS2(90
◦)

948 5.519 5.897 6.497 3.456 4.229 3.398 3.444

1, 326 5.515 8.891 6.500 3.451 4.231 3.391 3.438

1, 998 5.514 5.890 6.499 3.450 4.230 3.391 3.437

2, 448 5.514 5.889 6.499 3.449 4.230 3.390 3.436

3, 642 5.514 5.889 6.498 3.449 4.230 3.390 3.436

5, 038 5.513 5.888 6.498 3.448 4.229 3.390 3.436

6, 904 5.513 5.888 6.498 3.448 4.229 3.390 3.436

9, 008 5.513 5.888 6.498 3.448 4.229 3.390 3.436

Table 6.1. Convergence of selected wave speed velocities for a sample microstructure
with VM = 0.3, α = 10◦ and randomly oriented quartz grains. All wave speeds are in
km/s.

all analyses employ between 1, 000 and 9, 000 LST finite elements depending on the

complexity of the microstructure.

6.4.1 Comparison of Asymptotic Expansion Homogenization and Analytic Estimates

In this section, a comparison of the computed wave speed velocities obtained by the

analytic estimates, bounds and AEH methods is performed. In order to carry out

this investigation, select synthetic microstructures will be studied to emphasize the

importance of using an accurate homogenization technique such as AEH to obtain

accurate homogenized stiffnesses, and therefore, accurate wave speed velocities.

The first synthetic microstructure to be studied is for a synthetic microstructure

with a muscovite volume fraction of VM = 0.3, α = 0◦, and randomly oriented

quartz crystals. The P and S-wave speed velocities are plotted in Figure 6.5(a) as

a function of incidence angle γ using stiffnesses computed from the Voigt and Reuss

bounds, the geometric and arithmetic means and the AEH method. As can be seen

in Figure 6.5(a), VP for the geometric mean, arithmetic mean and AEH methods are
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similar and lie between the wave speeds computed from the bounds, as expected.

However, VP computed from the AEH method is lower than the geometric mean

estimate up until γ = 55.17◦ and is greater than the geometric mean thereafter.

A similar trend exist between the AEH and arithmetic mean curves. This leads

to a larger percent anisotropy of AP = 20.99% for the AEH as opposed to AP =

18.82% for the geometric mean. In fact, if one uses either of the bounds or the

geometric or arithmetic means to compute the homogenized stiffness tensor, they will

underestimate the percent anisotropy in the P -wave for this particular microstructure.

In addition to underestimating AP , using any of the analytic estimates or bounds will

also underestimate the P -delay, ∆tP , for a large range of incidence angles as shown

in Figure 6.5(a). For example, ∆tP (20
◦) = 0.0350 s/km using the AEH method,

but ranges from ∆tP (20
◦) = 0.0297 s/km to ∆tP (20

◦) = 0.0315 s/km for the other

bounds and estimates. Focusing on the S-wave speeds VS1 and VS2 in Figure 6.5(a), it

is clear that the AEH results do not coincide closely with the geometric or arithmetic

mean estimates once again. At γ = 0◦, the AEH results for VS1 and VS2 both

lie approximately halfway between speeds calculated using the geometric mean and

Reuss homogenized stiffnesses. At γ = 90◦ the AEH computed VS2 still lies between

the geometric mean and Reuss lower bound, however, VS1 is located between the

geometric mean and and Voigt upper bound values. This scenario gives rise to

erroneous shear splitting values ∆tS for values of γ of 50◦ and larger if the geometric

or arithmetic means are used, as seen in Figure 6.5(a). In fact, the shear splitting

values from the AEH results are larger than any of the other predicted values for

γ > 46.95◦.

The second synthetic microstructure to be investigated also has a muscovite volume

fraction of VM = 0.3 and an α = 0◦, albeit the quartz crystals all have their stiff

axis oriented in the y3 direction. The wave speeds for the AEH, bounding methods,

geometric and arithmetic means as a function of γ are given in Figure 6.5(b). Similar
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to the previously discussed synthetic rock fabric, the AEH computed VP wave speed

is closer to the Ruess than Voigt bound at γ = 0◦ and vice versa for γ = 90◦. This, of

course, indicates that AP is actually much higher than would be computed by either

of the bounds or geometric mean. Unlike the previous fabric, though, the discrepancy

between the AEH and geometric mean for VP increases appreciably from γ = 0◦ up

to an intermediate angle of γ = 35.10◦ where there is a peak error of 2.82% in the

geometric mean estimated wave speed. The end result is that the geometric mean,

or any of the other estimates or bounds for that matter, do not accurately capture

the shape of the VP (γ) curve. This fact also manifests itself in the poorly predicted

P -delay curves by the estimates and bounds, as shown in Figure 6.5(b). Referring to

the VS1 and VS2 for this particular rock fabric in Figure 6.5(b), it can be seen that for

large ranges of incidence angle γ, the AEH results do not correlate well with either

of the bounds or the geometric mean. This can give rise to erroneous S-split values

if the AEH wave speeds are not utilized, as shown in Figure 6.5(b). In addition,

it is worth noting that the difference between V max
S and V min

S for the AEH results is

smaller than any of the other methods. This will give rise to overestimated shear wave

speed anisotropy AS if the bounds or geometric mean are employed and is contrary

to the first rock fabric studied, where the opposite is true. For the curves shown in

Figure 6.5(b), the AEH results give AS = 12.45% as opposed to AS = 13.03% for the

arithmetic mean, the next lowest estimate of AS.

The next synthetic microstructure for which the wave speeds are computed is for a

muscovite volume fraction of VM = 0.4, α = 20◦ and all quartz crystals oriented

such that their stiff axis is in the y1 direction. The wave speeds for each of the

stiffness tensor homogenization methods of interest are shown in Figure 6.5(c). In

the previous two cases, the geometric and arithmetic means have been the closest to

the AEH results on average. In some instances, these estimates have overestimated

some of the wave speeds and at times, underestimated some of the wave speeds. The
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case shown in Figure 6.5(c) is unique because the geometric and arithmetic means

overestimate all three of the wave speeds VP , VS1 and VS2 for the entire range of

incidence angles shown. Another distinction between this fabric and the other two

is that the minimum error in the geometric mean estimate of VP occurs at a small

incidence angle of 16.65◦ whereas the other two fabrics had geometric mean estimates

that were most accurate at higher incidence angles. To be more specific, the fabric

of Figure 6.5(a) had coincident geometric mean and AEH computed wave speeds at

γ = 55.17◦ and the fabric of Figure 6.5(b) at γ = 69.20◦.

The last synthetic fabric studied possesses parameters of VM = 0.6 and α = 20◦ with

all quartz crystals oriented such that their stiff axis is aligned with the y2 direction.

The wave speeds for this fabric are shown in Figure 6.5(d) for the AEH and other

homogenization methods. As can be seen in the figure, the wave speeds for the

geometric and arithmetic mean estimates are relatively close to the AEH results with

the exception of VS1. For the entire range of γ shown in the figure, the AEH derived

VS1 is significantly smaller than corresponding geometric mean values. For this fabric,

the geometric mean will give good estimates of the true AP , νP45 and P -delay but

will significantly overestimate AS as well as the S-split ∆tS for most incidence angles

presented here as seen in Figure 6.5(d). The arithmetic mean suffers from the same

problems with the exception that the predicted S-split is fairly good for high γ and

the predicted P -delay is slightly worse than the geometric mean values for low γ.

After reviewing these four fabric cases, one major point is very clear. There is no

direct correlation between the wave speeds computed using the homogenized stiff-

nesses from the geometric mean, arithmetic mean and bounding methods and those

obtained using the more accurate AEH method. For example, if one decides to utilize

the geometric mean to obtain the homogenized stiffness tensor, the estimated wave

speeds could be high or they could be low depending on the incidence angle and grain

orientations. And where these variations in the estimates occurs over the range of
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incidence angles will not be clearly evident. Therefore, it is crucial that an accu-

rate homogenization scheme such as AEH, which accounts for the elastic interplay

between polycrystals, be employed in order to subsequently compute accurate wave

speed velocities over the entire range of incidence angles.

6.4.2 Sensitivity Analysis of Phase Volume Fractions, Crystal Orientations and Crys-

tal Spatial Distribution

In order to investigate the sensitivity of seismic wave speed velocities on phase vol-

ume fractions, crystal orientations and spatial distributions, a parametric studied is

performed. The aforementioned variables are systematically changed for the syn-

thetic microstructures of Section 6.3 and the AEH elastic stiffnesses are utilized in

determining the wave speed velocities and seismic anisotropy measures.

Figure 6.6 shows the VP , VS1 and VS2 velocities, the P -delay and S-split versus the

incidence angle for different quartz orientations at different volume fraction of mus-

covite. The standard deviation for the orientation of the muscovite grains is α = 0◦

for the plots in Figure 6.6 in order to isolate the effects of muscovite volume fraction

and quartz grain orientation. For the fabric consisting of pure quartz, one can see

that the material behaves fairly isotropic if the quartz grains are oriented randomly,

as expected. The VP , VS1 and VS2 velocities remain constant at varying incidence an-

gles and the P -delay and S-split are close to 0 for the entire range of γ investigated.

In the fabric that has the stiff axis of the quartz oriented parallel to the y2 axis, the

VP curve possesses an isotropic behavior as well, due to the trigonal symmetry of

the quartz crystals. The velocity profiles become more alike if more muscovite is

added to the system and the strong elastic anisotropy of the muscovite starts to play

a dominant role. When no muscovite is present, the VS1 and VS2 curves possess a

similar value at varying incidence angles depending on the quartz grain orientations.

With increasing amounts of muscovite these locations move closer to one another to
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eventually occur at little under 40◦ when 90% of the fabric consists of muscovite. As

the volume fraction of muscovite increases the P -delay and S-split values also increase

due to the greater volume of the highly anisotropic muscovite phase relative to the

mildly anisotropic quartz phase.

Figure 6.7 shows the VP , VS1 and VS2 velocities, the P -delay and S-split versus the

incidence angle for different standard deviations for the muscovite orientations at

different volume fractions of muscovite. For these plots a random orientation of

quartz is used as it creates a relatively isotropic matrix, making that the influence

of the orientation of the muscovite grains the primary factor in seismic anisotropy

characteristics. With increasing amounts of muscovite the same behavior occurs as

is displayed in Figure 6.6, namely larger variations in the VP and VS1, VS2 curves

which give rise to higher peak P -delay and S-split values. As for the effect of

muscovite grain standard deviation, it can be seen in Figure 6.7 that increasing α

creates a bulk material that becomes less anisotropic which manifests itself in the

diminished magnitude of the P -delay and S-split curves for most γ. This is not

surprising since greater variation in the muscovite grain orientations contributes to

greater bulk stiffness in the y3 direction and detracts from the bulk stiffness in y1

direction creating a less anisotropic rock fabric. Another effect of increasing the

muscovite grain orientation standard deviation is that the incidence angle at which the

VS1 and VS2 curves possess a similar value decreases. This can be seen clearly in the S-

split curves where the intermediate minimum ∆tS occurs at an ever smaller incidence

angle as α is increased. For the VM = 0.6 case, the location of the aforementioned

point occurs at γ = 41.40◦ for α = 0◦ and reduces to γ = 30.15◦ for α = 20◦.

Figure 6.8 shows the percentage anisotropy of the VP curve, AP , as a function of

muscovite volume fraction for the fabrics with the different quartz orientations and

muscovite inclusion distributions. For the fabrics in which the quartz is either oriented

randomly or is aligned with its stiff axis in the y1 or y2 direction, AP increases
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Figure 60: AP for varying muscovite distributions and quartz orientations as a
function of muscovite volume fraction.

with increasing muscovite volume fraction. If the quartz is oriented with its stiff

axis parallel to the y3 axis the anisotropy decreases until approximately 15 to 20%

muscovite volume fraction, and increases with increasing amounts of muscovite. This

dip in percentage anisotropy of the VP curve is due to the alignment of the stiff axis

of the quartz with the compliant axis of the muscovite. This creates a fabric that

becomes less anisotropic as muscovite is slowly introduced. Once enough muscovite

is present, however, the strong anisotropy of the muscovite becomes the dominant

factor in determining the bulk percentage anisotropy. It should also be noted that

with more variation in the muscovite orientations, that is a higher inclusion standard

deviation, the increase in AP is with increasing volume muscovite fraction is lower

for the same reasons expressed previously that diminish peak P -delay and S-split

values. Prior to proceeding, it is worth noting that Figure 6.8 clearly demonstrates

the importance of the orientation of the quartz crystal orientations, especially at
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low muscovite volume fractions. While the quartz orientations studied represent

possible extremes, it is evident that fabrics that contain quartz crystals with a strong

crystallographic preferred orientation have seismic anisotropy measures that depend

greatly on the particular quartz crystal orientation. For example, the fabrics with

α = 0◦ and VM = 0.2 in Figure 6.8 have AP values that range from 5.82% to 26.46%

depending on whether the quartz crystals are randomly oriented or are have their

stiff axis aligned with a particular analysis coordinate.

Figure 6.9 shows the percentage anisotropy of the S-waves, AS, versus the volume

fraction of muscovite for the fabrics with the different quartz orientations and mus-

covite distributions. If the quartz is oriented randomly, the percentage anisotropy of

the S-waves increases with an increasing amount of muscovite. When the quartz is

oriented with the stiff axis parallel to the y1 axis, AS is 31.21% when no muscovite

is present. When muscovite is added, AS first slightly decreases before it increases

with increasing amounts of muscovite. When the stiff axis of the quartz is oriented

parallel to the y2 and y3 axes, the S-wave speed anisotropy of the pure quartz fabrics

is 42.59%. For the fabrics with the quartz stiff axis aligned with y3, the addition

of muscovite with α = 20◦ decreases AS to 21.18% at VM = 0.356 with AS increas-

ing thereafter as more muscovite is included. If the muscovite has no variance in

orientation, the S-wave speed anisotropy decreases to 24.53% with a VM = 0.261 for

the quartz stiff axis parallel to y3. For the fabric with quartz stiff axis aligned with

the y2 direction and α = 0◦, AS diminishes to 40.62% with VM = 0.135. In gen-

eral, AS behaves similar to AP although there are some key differences. The cases

where the quartz stiff axis is oriented in either the y1 and y2 directions possess AS

curves that dip slightly at first before increasing with increasing muscovite content.

The corresponding AP curves increase monotonically as muscovite volume fraction

increases. In addition, AS for the fabric with the quartz stiff axis aligned with the

y3 axis continues to diminish beyond the muscovite volume fraction point at which
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Figure 61: AS for varying muscovite distributions and quartz orientations as a func-
tion of muscovite volume fraction.

the corresponding AP obtains its minimum value and increases more slowly with the

introduction of more muscovite once the minimum AS is achieved. As was noted in

the discussion of AP trends, the importance of the quartz crystal orientation is very

significant at lower muscovite volume fractions and the curves of AS in Figure 6.9

reinforce this notion.

Figure 6.10 shows the νP45 versus the volume fraction of muscovite for the fabrics

with the different quartz orientations and muscovite distributions. With less than

approximately 50% volume muscovite, the percentage magnitudes are high and are

omitted from the plot. This is due to the small difference between VP (0
◦) and

VP (90
◦) for these fabrics, the difference of which constitutes the denominator of the

vP45 calculation thus creating very large vP45 values if VP (45◦) is moderately different

than VP (0
◦). At higher amounts of muscovite volume fraction, the orientation of the
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Figure 62: νP45 for varying muscovite distributions and quartz orientations as a
function of muscovite volume fraction.

quartz appears to have a minor effect on νP45. At intermediate volume fractions, the

role is potentially more significant as seen in the larger spread of possible νP45 for a

given α and quartz crystal orientation. As can be seen in Figure 6.10, the particular

combination of VM = 0.4, α = 30◦ and all quartz crystals with stiff axes lying in

the y3 direction gives vP45 = 76.01%, a value that is rather large for normalized

VP (45
◦). The VP and VS1, VS2 curves for this particular rock fabric are shown

in Figure 6.11. Unlike the VP trends for the Haast Schist in Figure 6.3, the P -

wave velocity increases more rapidly with increasing incidence angle and remains

relatively constant for incidence angles larger than 60◦. This behavior gives rise to

the aforementioned large vP45. Referring back to Figure 6.11 it can be seen that the

muscovite inclusion distribution, unlike quartz crystal orientation, does appear to play

a more significant role at moderate and large muscovite volume fractions as increasing

135

goupeea1
Stamp

goupeea1
Rectangle



Figure 63: Wave speeds as a function of incidence angle for rock fabrics with VM =
0.4, α = 30◦ and quartz grain stiff axes aligned with the y3 direction.

α tends to increase νP45. This fact is supported by the VP curves for the VM = 0.6

fabric shown in Figure 6.8. As can be seen in the figure, VP (45◦) is approximately

the same for all α shown as is also the case for VP (90◦), however, VP (90◦) diminishes

significantly with increasing α. This trend maintains the numerator in equation (76)

whilst shrinking the denominator with increasing α, thus increasing νP45.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In the first part of this dissertation, a methodology is developed for the creation of

simulated random heterogeneous microstructures, the properties of which are char-

acterized using the asymptotic expansion homogenization method. The simulated

microstructures, which are generated using a random morphology description func-

tion, compare well with actual micrographs of heterogeneous materials. The random

microstructures are characterized using statistical tools from the field of random het-

erogenous media. The microstructures generated by the RMDF method are found to

be statistically homogeneous and isotropic. Results indicate that on average perco-

lation occurs when the volume fractions of the individual material phases equal 0.5,

although the exact volume fraction at which percolation occurs depends on the specific

RMDF microstructure under consideration. The simulated microstructures exhibit an

internal characteristic length that depends on the number of Gaussian sources used

to construct the RMDF. Thus, it is possible to create random microstructures with

a desired characteristic length by simply varying the number of Gaussian sources.

Numerical results show that the characteristic length can be halved by quadrupling

the number of Gaussian sources.

The homogenized material properties of simulated RMDF microstructures are ob-

tained using the AEH method. The microstructural fields necessary for the determi-

nation of the homogenized material properties are obtained by solving an auxiliary

problem at the microscale using the finite element method. The homogenized ma-

terial properties are compared with widely used analytical homogenization schemes

and bounding methods. For typical material combinations with moderate dispari-

ties in the phase material properties, the homogenized properties obtained using the

self-consistent scheme are in good agreement with values obtained using the AEH
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method. However, the self-consistent scheme and AEH method results differ for the

one high-contrast material combination studied. In the absence of further study no

generalizations can be made regarding the accuracy of the self-consistent scheme for

high-contrast two-phase composites. Nevertheless, the results of the high-contrast

material study stress the importance of using an accurate homogenization method

such as AEH when precise estimates of the effective material properties of random

heterogeneous materials are required.

In addition to characterizing the statistical and thermomechanical properties of ran-

dom heterogeneous microstructures, failure of random heterogeneous materials is an-

alyzed using a direct micromechanical failure analysis approach. The microstresses in

conjunction with material failure models are used to assess failure at the microstruc-

tural level. Initial failure envelopes are presented for metal/ceramic and metal/metal

random heterogeneous materials. The failure envelopes, which are conservative since

they represent the stresses at which on average initial failure occurs at some point

in the microstructure, provide useful insight into the strength of random heteroge-

nous materials. While metal/metal material combinations exhibit equal strength

in both biaxial tension and compression, metal/ceramic random materials possess

greater strength in biaxial compression than tension due to the large compressive

strength and comparatively low tensile strength of the ceramic phase. The effect

of temperature and the resulting thermal stresses on the failure envelopes for ran-

dom heterogeneous materials is also investigated. As the temperatures increases, the

strength of the heterogeneous material decreases in biaxial tension and increases in

biaxial compression.

To conclude the portion of the work concerning random heterogeneous materials,

results for two model problems with random microstructure are presented to illus-

trate the multiscale failure analysis approach. The first is an Al/Al2O3 functionally

graded beam with an applied mechanical load. The average stresses are obtained

138



through a finite element solution of the macroscopic equations. The failure envelopes

of Al/Al2O3 are used to obtain the factor of safety of the functionally graded beam.

The factor of safety obtained from the failure envelopes, which represents the average

strength of 1, 000 distinct microstructure realizations, is compared with the values

obtained for three separate representative random microstructures at the critical lo-

cation. While the factors of safety are different for each of the three realizations

presented, they compare well with the factor of safety obtained using the failure en-

velopes. The second model problem concerns the multiscale analysis of a W/Cu

functionally graded component subjected to an intense heat flux over a portion of

its boundary. It is found that the macroscopic temperature and average stresses

computed using the material properties from asymptotic expansion homogenization

are nearly identical with values obtained using the self-consistent material properties.

This observation lends further proof that the self-consistent scheme is suitable for esti-

mating the effective properties of random heterogeneous materials when the contrast

in the material properties of the phases is small to moderate, which is the case for

the W/Cu material combination considered here. Next, direct micromechanical fail-

ure analysis of random microstructures are performed to obtain the necessary initial

failure envelopes to assess the failure of the thermally loaded W/Cu heterogeneous

component. As was done in the first model problem, the factor of safety obtained

from the failure envelopes is compared with results from three distinct sample RMEs

at the critical location. Once again, good agreement between the two is observed.

Lastly, it should be noted that analysis of sample microstructures at the critical lo-

cations show that only very localized regions in the RMEs experience low factors of

safety and a large portion of the microstructure is well within the failure strengths.

This reinforces the notion that the direct micromechanical failure analysis presented

here yields conservative strengths.
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The second major portion of this dissertation presents a methodology for the transient

thermoelastic analysis of functionally graded materials. Two-phase microstructures

are created using morphology description functions. With the macroscopic geometry,

volume fraction distribution and loading as well as knowledge of the microstructural

morphologies at all locations within the macroscopic body, a multiscale analysis is

carried out using the asymptotic expansion homogenization method coupled with

a finite element technique. The developed multiscale code is validated using two

problems previously studied in the literature. The first problem is a multiscale

analysis of a boron/aluminum plate loaded in tension with a centrally located hole

studied by Fish and Wagiman (1992) as well as Ghosh et al. (1995). Results for the

homogenized elastic constants of the boron fiber/aluminum matrix microstructures

compare very well with those provided in previous works. In addition, line plots of

microstress component σ022 through the microstructure at the critical location gener-

ated from the multiscale analysis code compare favorably with published results in

(Fish and Wagiman, 1992; Ghosh et al., 1995). In the second problem, the transient

thermomechanical response of a functionally graded plate for which an exact solution

has been provided by Vel and Batra (2003), is used to validate the transient macro-

scopic analysis finite element code. Transient and through thickness results for the

temperature and stresses in the plate compare well with the exact results.

After validating the multiscale finite element codes, two model problems are stud-

ied to demonstrate the potential of the multiscale approach as applied to thermally

loaded functionally graded material components. The first transient multiscale FGM

problem studied is a bilinearly graded tungsten/copper specimen with fairly simple

microstructural morphologies subjected a time-varying heat flux over a portion of

its top surface. After performing the multiscale analysis which included a direct

micromechanical failure analysis, it is determined that the minimum factor of safety

Fs occurs at a location the middle of the specimen at a volume fraction of VW = 0.5
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which corresponds to a microstructural morphology which resembles a checkerboard.

The low factor of safety can be attributed to the presence of very sharp corners in

the phase boundaries within the microstructure for VW = 0.5 which give rise to very

large stress concentrations. Other points in the specimen where the macroscopic

temperature and stresses are more severe but the volume fraction VW is not equal to

0.5 do not give rise to lower factors of safety Fmacro
s lower than the aforementioned

critical point since the microstructure morphologies at these volume fractions possess

phase boundaries with gentler profiles that do not magnify stresses nearly as severe

as the checkerboard pattern. This illustrates that while the factor of safety of a

two-phase material depends on the macroscopic condition, the morphology of the

microstructure plays a critical role in the failure of the material. Lastly, the results

provided by the multiscale analysis for the first model problem also demonstrate that

while the specimen, which is in a state of plane stress, has an out-of-plane macro-

scopic stress component σ̄33 that is zero throughout the component, this does not

imply that the corresponding microstress component σ033 need also be zero through-

out the microstructure. In fact, the component σ033 can be fairly significant even

when σ̄33 = 0 and must not be neglected.

The second transient FGM model problem studied is a titanium/zirconia function-

ally graded turbine blade geometry in a state of plane stress at the macroscopic level.

The blade, which has its outer temperature increased rapidly while maintaining in-

terior cooling channels at the reference temperature, possesses random two-phase

microstructures which resemble morphologies of a variety of actual composite materi-

als. The multiscale analysis shows that the critical location in the blade begins in the

monolithic zirconia outer layer and transitions through successively smaller zirconia

volume fractions to a point on the interior of the graded region where VZrO2 = 0.53

and remains stationary for the remainder of the transient until steady-state conditions

are reached. The multiscale results also indicate that the increase in temperature
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from the reference state θ0 can create large internal stresses in the microstructure,

and thus, is often the major factor limiting the factor of safety. However, while the

temperature increase in the microstructure is important, it is not the only factor of

significance as illustrated by the fact that the point of lowest factor of safety Fs occurs

at a point in the blade where VZrO2 = 0.53 even though there are many other points

of intermediate volume fraction in the blade where θ0 is higher than at the critical

location. This implies the microstructural morphology also plays a significant role in

the microstress state, and hence, on determining the limiting factor of safety in the

macroscopic body. In other words, θ0, the microstructural morphology and to a lesser

extent the macroscopic stress state all play a role in determining the microstresses,

and hence the factor of safety Fmacro
s , at a point in the macroscopic body. The

multiscale procedure presented here can be used to identify the critical combination

of conditions that determine the strength of a thermally loaded functionally graded

component.

The last major focus of this dissertation involves studying the effects of some key

rock fabric characteristics on seismic wave speed anisotropy for quartz/muscovite rich

rocks. To determine the effect of these features on seismic wave speed anisotropy,

synthetic quartz/muscovite rock fabric microstructures are created with adjustable

muscovite volume fraction, muscovite inclusion distribution and quartz crystal mater-

ial orientation. The homogenized elastic stiffnesses are obtained via the rigorous and

accurate asymptotic expansion homogenization method and are subsequently utilized

in determining the wave speed velocities via solution of the Christoffel equation. The

wave speed velocities obtained using the asymptotic expansion homogenization stiff-

nesses are compared with those computed using elastic stiffnesses obtained from com-

mon estimates and bounds, namely the Voigt and Reuss bounds and the arithmetic

and geometric means. Once the comparison of wave speeds is completed, a para-

metric study is performed by systematically adjusting the synthetic microstructure
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characteristics and recording their homogenized elastic stiffnesses from the asymp-

totic expansion homogenization method. The wave speed velocities are subsequently

computed for the resulting homogenized stiffnesses and used to evaluate common seis-

mic anisotropy measures which distill complex wave speed versus propagation trends

into more meaningful quantities.

When comparing the wave speed velocities computed from the commonly used ana-

lytic estimates and bound elastic stiffnesses with those obtained from the asymptotic

expansion homogenization stiffnesses, no clear discernible trends are evident. On

average, the geometric and arithmetic mean stiffnesses perform the best for comput-

ing the wave speed velocities over the entire range of propagation direction incidence

angles explored in this work. However, it is nearly impossible to know if these ho-

mogenization estimates lead to overpredicted or underpredicted wave speed velocities

let alone the magnitude of the error and how they vary with incidence angle. For

the sample rock fabrics investigated, the analytic estimate stiffnesses were found to

lead to poor predictions of percent anisotropy in the P and S- wave speed curves,

normalized VP (45
◦) as well as P -delay and S-split curves. As evidence of this, one

fabric possessed an actual AS that was larger than any of those provided by the an-

alytic bounds or estimate stiffnesses and another exhibited an AS that was smaller

than any of those computed from the bounds and estimates.

In performing the parametric study, a number of useful observations were made

with regard to the importance of rock fabric characteristics on seismic wave speed

anisotropy. At minimal to low muscovite volume fractions, the orientation of quartz

crystals plays a significant role on the shape of the VP , VS1 and VS2 trends as a func-

tion of incidence angle. When the quartz crystals are oriented randomly, the bulk

rock exhibits quasi-isotropic seismic wave speed behavior. If the quartz crystals each

have their stiff axes aligned in a particular direction, the wave speed velocities pos-

sess a more complicated dependence on the incidence angle, the variation of which is
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also dependent on the particular preferred crystallographic orientation of the quartz

crystals. As more muscovite is introduced into the fabric, the wave speed velocity

trends are not influenced as greatly by the particular quartz crystal orientation. The

end result is that the highly elastically anisotropic muscovite dominates the elastic,

and hence, seismic behavior of the rock fabric which leads to generally higher AP

and AS. With regard to the orientation distribution of the muscovite inclusions,

increasing the standard deviation of the inclusions about the y1 axis, α, tends to de-

crease the dependence of VP , VS1 and VS2 on incidence angle. This results in smaller

AP and AS values as well as diminished P -delay and S-split quantities for most γ

as α is increased. For fabrics where the stiff axis of the quartz is aligned with the

compliant axis of the muscovite, AP and AS diminishes as muscovite volume fraction

is first increased and only begins to rise after an appreciable amount of muscovite

volume is reached. The AS as a function of muscovite volume fraction trends are

similar, albeit far less pronounced, when the quartz stiff axis is aligned with the y1

and y2 directions. The last major seismic anisotropy measure studied, the normal-

ized VP (45
◦) quantity, is not strongly affected by quartz orientation for moderate and

high muscovite volume fractions. However, increasing α generally increases νP45 for

the aforementioned ranges of muscovite volume fractions. In addition, it is observed

that certain combinations of muscovite volume fraction, α and quartz orientation can

give rise to very high νP45. For VM = 0.4, α = 30◦ and quartz grains with stiff axes

aligned with the y3 direction, νP45 is a significant 76.01%.

With regard to future work, there exist a number of avenues related to this research

which would prove useful to explore. In the field of random heterogeneous materials,

further characterization of homogenized random media properties could be performed

by employing altered, or entirely different, random morphology description functions.

The effect of varying percolation thresholds, inclusion shapes and other key char-

acteristics could be explored. In addition, further study of high contrast material
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constituents, or even porous materials, could provide a number of useful insights.

These could include assessing the performance of analytic homogenization schemes

for high contrast materials as well determining the effect of pore size and shape on

the strength of porous materials. Outside of studying different material combina-

tions and RMDFs, an extension of the current methods to the nonlinear regime via

multiscale elastoplastic analyses would prove worthwhile. With such a formulation, a

better assessment of the failure response of random media beyond the loads predicted

by the conservative initial failure envelopes could be made. While it is assumed

that random media can support loads much higher than those predicted by the initial

failure envelopes, a multiscale elastoplastic analysis would quantify the extent of con-

servatism in the direct micromechanical failure analysis methodology found in this

work.

In the realm of functionally graded materials, many possible extensions of this work

exist. While more accurate analyses of FGMs which account for microstructural

morphology have been performed in this work, no tailoring of spatial volume fraction

or microstructural morphology distribution throughout the FGM part has been per-

formed here. Potential possibilities include optimizing volume fraction distribution

for a given relationship between volume fraction and microstructural morphology, or

even more alluring, optimizing the microstructural morphology at each point in the

macroscopic FGM body to achieve maximum performance for a particular set of de-

sign criteria. In addition, the direct micromechanical failure analysis methods could

be used to provide a more accurate assessment of component strength in optimization

routines. Prior FGM optimization work which attempted to use component factor of

safety as a design objective or constraint, such as Cho and Choi (2004) and Goupee

and Vel (2007), did not utilize accurate methods of determining the homogenized

strength of FGM materials. In addition to incorporating the direct micromechanical

failure analysis technique into a FGM component optimization routine, one could also
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extend the capabilities of the FGM analysis tool by incorporating the aforementioned

multiscale elastoplastic analysis technique to obtain a more accurate FGM analyses,

and therefore, more useful FGM designs from the optimization algorithms.

This work represents the first use of the asymptotic expansion homogenization method

in the geophysics community, and as such, many other opportunities exist for the AEH

method in geology. Within the field of seismology, the multiscale methods employed

here could be utilized to extensively to better understand the role rock fabrics and

geologic features on seismic wave anisotropy. In addition to the rock fabrics focused

on in this work, other, more complicated features could be incorporated into the rock

microstructures to better simulate the wide variety of fabrics found in Earth. These

could include more mineral types, more realistic crystal shapes and more complex

arrangements of crystal distributions throughout the microstructure such as crenula-

tion cleavage. Other opportunities include employing the AEH method to determine

the homogenized elastic stiffnesses of actual micrographs from real rock samples ob-

tained by electron back scatter diffraction. This could lead to better development of

synthetic microstructures for studying seismic wave speed anisotropy as well as help

ascertain the true wave speed velocities in Earth’s crust.
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Kamiński M, Figiel Ł, 2001, Effective elastoplastic properties of the periodic compos-
ites, Computational Materials Science 22:221-239.

Kawasaki A, Watanabe R, 1997, Concept and P/M fabrication of functionally gradi-
ent materials, Ceramics International 23:73-83.

Lai WM, Rubin D, Krempl E, 1999, Introduction to Continuum Mechanics, 3rd Edi-
tion, Butterworth-Heinemann, Burlington.

Langer SA, Fuller E, Carter WC, 2001, OOF: An image-based finite-element analysis
of material microstructures, Computing in Science and Engineering 3(3):15-23.

Lee SB, Torquato S, 1989, Measure of clustering in continuum percolation: Computer-
simulation of the two-point cluster function, Journal of Chemical Physics 91:1173-
1178.

Leggoe JW, Mammoli AA, Bush MB, Hu XZ, 1998, Finite element modelling of
deformation in particulate reinforced metal matrix composites with random local
microstructure variation, Acta Materialia 46(17):6075-6088.

Leßle Q, Dong M, Schmauder S, 1999, Self-consistent matricity model to simulate the
mechanical behaviour of interpenetrating microstructures, Computational Materials
Science 15(4):455-465.

Lipton R, 2002, Design of functionally graded composite structures in the presence
of stress constraints, International Journal of Solids and Structures 39:2575-2586.

151



Loy CT, Lam KY, Reddy JN, 1999, Vibration of functionally graded cylindrical shells,
International Journal of Mechanical Sciences 41:309-324.

Mainprice D, Humbert M, 1994, Methods of calculating petrophysical properties from
lattice preferred orientation data, Surveys in Geophysics 15(5):575-592.

Matthies S, Humbert M, 1993, The realization of the concept of a geometric mean
for calculating physical constants of polycrystalline materials, Physica Status Solidi
B-Basic Research 177:K47-K50.

Mainprice D, 1990, A fortran program to calculate seismic anisotropy from the lattice
preferred orientation of minerals, Computers and Geosciences 16:385-393.

Mainprice D, Nicolas A, 1989, Development of shape and lattice preferred orienta-
tions: application to the seismic anisotropy of the lower crust, Journal of Structural
Geology 11:175-189.

Misnaevsky Jr. LL, 2005, Automatic voxel-based generation of 3D microstructural FE
models and its application to the damage analysis of composites, Materials Science
and Engineering A407:11-23.

Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG, 1999, Functionally
Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers,
Boston.

Mooney WD, 2007, Crust and lithospheric structure - global crustal structure, In:
Schubert G, Romanowicz B, Dziewonski A (Eds.), Treatise on Geophysics, Volume
1, Seismology and structure of the Earth, Elsevier, 361-417.

Mori T, Tanaka T, 1973, Average stresses in matrix and average elastic energy of
materials with misfitting inclusions, Acta Metallurgica 21:571-574.

Nowacki W, 1975, Dynamics Problems of Thermoelasticity, Kluwer Academic Pub-
lishers, Boston.

Nowinski JL, 1978, Theory of Thermoelasticity with Applications, Sijthoff & Noord-
hoff International Publishers, Alphen aan den Rijn.

Okaya DA, Christensen NI, 2002, Anisotropic effects of non-axial seismic wave prop-
agation in foliated crustal rocks, Geophysical Research Letters 29(11):1507.

152



Okaya DA, Christensen NI, Stanley D, Stern T, 1995, Crustal anisotropy in the
vicinity of the Alpine Fault Zone, South Island. New Zealand Journal of Geology and
Geophysics 38:579-583.

Okaya, DA, McEvilly, T, 2003, Elastic wave propagation in anisotropic crustal mate-
rial possessing arbitrary internal tilt, Geophysical Journal International 153:344-358.

Ostoja-Starzewski M, 1998, Random field models of heterogeneous materials, Inter-
national Journal of Solids and Structures 35(19):2429-2455.

Pelletier JL, Vel SS, 2006, An exact solution for the steady-state thermoelastic re-
sponse of functionally graded orthotropic cylindrical shells, International Journal of
Solids and Structures 43(5):1131-1158.

Prager S, 1961, Viscous flow through porous media, Physics of Fluids 4:1477-1482.

Qian LF, Ching HK, 2004, Static and dynamic analysis of 2-D functionally graded
elasticity by using meshless local petrov-galerkin method, Journal of the Chinese
Institute of Engineers 27:491-503.

Reddy JN, 1993, An Introduction to the Finite Element Method, 2nd Edition, McGraw
Hill, Boston.

Reuss A, 1929, Account of the liquid limit of mixed crystals on the basis of the
plasticity condition for single crystal, Zeitschrift fur Angewandte Mathematik und
Mechanik 9:49-58.

Roberts AP, Knackstedt MA, 1996, Structure-property correlations in model com-
posite materials, Physical Review E 54(3):2313-2328.

Roberts AP, Teubner M, 1995, Transport properties of heterogeneous materials de-
rived from Gaussian random fields: Bounds and simulation, Physical Review E 51(5):4141-
4154.

Rosen BW, Hashin Z, 1970, Effective thermal expansion coefficients and specific heats
of composite materials, International Journal of Engineering Science 8(2):157-174.

Sanchez-Palencia E, 1981, Nonhomogeneous media and vibration theory, The Journal
of the Acoustical Society of America 69(3):884.

Sanchez-Palencia E, 1983, Homogenization method for the study of composite media,
Asymptotic Analysis II 985:192-214.

153



Savage, M, 1999, Seismic anisotropy and mantle deformation: what have we learned
from shear wave splitting?, Reviews of Geophysics 37:65-106.

Segurado J, Llorca J, 2002, A numerical approximation to the elastic properties
of sphere-reinforced composites, Journal of the Mechanics and Physics of Solids
50:2107-2121.

Silva ECN, Walters MC, Paulino GH, 2006, Modeling bamboo as a functionally graded
material: lessons for the analysis of affordable materials, Journal of Materials Science
41:6991-7004.

Simmons G, 1964, Velocity of shear waves in rocks to 10 kilobars, 1, Journal of
Geophysical Research 69:1123-1130.

Smith PA, Torquato S, 1988, Computer simulation results for the two-point proba-
bility function of composite media, Journal of Computational Physics 76:176-191.

Soppa E, Schmauder S, Fischer G, Brollo J, Weber U, 2003, Deformation and damage
in Al/Al2O3, Computational Materials Science 28(3-4):574-586.

Takagi K, Li J-F, Yokoyama S, Watanabe R, 2003, Fabrication and evaluation of
PZT/Pt piezoelectric composites and functionally graded actuators, Journal of the
European Ceramic Society 23:1577-1583.

Takano N, Zako M, Ishizono M, 2000, Multi-scale computational method for elastic
bodies with global and local heterogeneity, Journal of Computer-Aided Materials
Design 7:111-132.

Taliercio A, 2005, Generalized plane strain finite element model for the analysis of
elastoplastic composites, International Journal of Solids and Structures 42:2361-2379.

Tamura I, Tomota Y, Ozawa M, 1973, Strength and ductility of Fe-Ni-C alloys com-
posed of austenite and martensite with various strengths, Proceedings of the 3rd In-
ternational Conference on Strength of Metals and Alloys 1:611-615.

Terada K, Hori M, Kyoya T, Kikuchi N, 2000, Simulation of the multi-scale conver-
gence in computational homogenization approaches, International Journal of Solids
and Structures 37:2285-2311.

Terada K, Kikuchi N, 1995, Nonlinear homogenization method for practical applica-
tions, In: Computational Methods in Micromechanics (Proceedings of 1995 ASME

154



International Mechanical Engineering Congress and Exposition), Ghosh S, Ostoja-
Starzewski M (Eds.) AMD-212/MD-22, ASME Press, 1-16.

Terada K, Kikuchi N, 2001, A class of general algorithms for multi-scale analyses
of heterogeneous media, Computer Methods in Applied Mechanics and Engineering
190:5427-5464.

Torquato S, 2002, Random Heterogeneous Materials: Microstructure and Macroscopic
Properties, Springer-Verlag, New York.

Torquato S, Stell G, 1982, Microstructure of two-phase random media. I. The n-point
probability functions, Journal of Chemical Physics 77:2071-2077.

Torquato S, Stell G, 1983, Microstructure of two-phase random media. III. The n-
point probability functions for fully penetrable spheres, Journal of Chemical Physics
79(3):1505-1510.

Ueda S, Gasik M, 2000, Thermal-elasto-plastic analysis of W-Cu functionally graded
materials subjected to a uniform heat flow by micromechanical model, Journal of
Thermal Stresses 23:395-409.

van der Sluis O, Schreurs PJG, Brekelmans WAM, Meijer HEH, 2000, Overall behav-
ior of heterogeneous elastoviscoplastic materials: effect of microstructural modelling,
Mechanics of Materials 32:449-462.

Vel SS, Batra RC, 2002, Exact solution for the thermoelastic deformations of func-
tionally graded thick rectangular plates, AIAA Journal 40(7):1421-1433.

Vel SS, Batra RC, 2003, Three-dimensional analysis of transient thermal stresses in
functionally graded plates, International Journal of Solids and Structures 40:7181-
7196.

Vel SS, Pelletier JL, 2007, Multi-objective optimization of functionally graded thick
shells for thermal loading, Composite Structures 81(3):386-400.

Voigt W, 1889, Über die beziehung zwischen den beiden elasticitäts-constanten isotroper
körper, Annalen der Physik and Chemie 38:573-587.

Voigt W, 1928, Lehrbuch Kristallphy.

Wegner LD, Gibson LJ, 2000, The mechanical behaviour of interpenetrating phase
composites - I: modelling, International Journal of Mechanical Sciences 42(5):925-
942.

155



Wegner LD, Gibson LJ, 2001, The mechanical behaviour of interpenetrating phase
composites - III: resin-impregnated porous stainless steel, International Journal of
Mechanical Sciences 43(4):1061-1072.

Yin HM, Sun LZ, Paulino GH, 2005, A multiscale framework for elastic deformation
of functionally graded composites, Functionally Graded Materials VIII, Materials
Science Forum 492-493:391-396.

156



BIOGRAPHY

Andrew J. Goupee was born in Bangor, Maine on January 29, 1981. He was raised

in Orrington, Maine and graduated from Brewer High School in June of 1999. He

then attended The University of Maine beginning in the fall of 1999. He graduated

as Valedictorian of his graduating class of 2003, and received a Bachelor of Science

degree in Mechanical Engineering. He entered the Mechanical Engineering graduate

program at the University of Maine in the summer of 2003 and subsequently earned

his Master of Science degree in Mechanical Engineering in 2005. At the completion of

his Master of Science degree, Andrew entered the doctoral program in the Department

of Mechanical Engineering at the University of Maine. Andrew is a candidate for

the Doctor of Philosophy degree in Mechanical Engineering from The University of

Maine in May, 2010.

157


	The University of Maine
	DigitalCommons@UMaine
	2010

	Multiscale Investigation of Random Heterogenous Media in Materials and Earth Sciences
	Andrew J. Goupee
	Recommended Citation


	dissertationr12.dvi

