60 research outputs found

    Differential effects of rapalogues, dual kinase inhibitors on human ovarian carcinoma cells in vitro

    Get PDF
    Ovarian cancer is the second most common gynaecological malignancy and was diagnosed in over 7,000 women in 2011 in the UK. There are currently no reliable biomarkers available for use in a regular screening assay for ovarian cancer and due to characteristic late presentation (78% in stages III and IV) ovarian cancer has a low survival rate (35% after 10 years). The mTOR pathway is a central regulator of growth, proliferation, apoptosis and angiogenesis; providing balance between available resources such as amino acids and growth factors, and stresses such as hypoxia, to control cellular behaviour accordingly. Emerging data links mTOR with the aetiopathogenesis of ovarian cancer. We hypothesised that mTOR inhibitors could play a therapeutic role in ovarian cancer treatment. In this study we began by validating the expression of four main mTOR pathway components, mTOR, DEPTOR, rictor and raptor, at gene and protein level in in vitro models of endometrioid (MDAH2774) and clear cell (SKOV3) ovarian cancer using qPCR and ImageStream technology. Using a wound healing assay we show that inhibition of the mTOR pathway using rapamycin, rapalogues, resveratrol and NVP BEZ-235 induces a cytostatic and not cytotoxic response up to 18 h in these cell lines. We extended these findings up to 72 h with a proliferation assay and show that the effects of inhibition of the mTOR pathway are primarily mediated by the dephosphorylation of p70S6 kinase. We show that mTOR inhibition does not involve alteration of mTOR pathway components or induce caspase 9 cleavage. Preclinical studies including ovarian tissue of ovarian cancer patients, unaffected controls and patients with unrelated gynaecological conditions show that DEPTOR is reliably upregulated in ovarian cancer

    The possible anti-inflammatory role of circulating human leukocyte antigen levels in women with endometriosis after treatment with danazol and leuprorelin acetate depot.

    Get PDF
    BACKGROUND: Endometriosis is defined as an inflammatory condition of the female reproductive tract, a state often associated with infertility and miscarriage. Many exogenously administered factors (treatments) control the disease via as yet unknown pathways. Possible candidate molecules involved in these mechanisms could be the serum-soluble human leukocyte antigens (sHIA) that have been detected in a variety of human body fluids and that are associated with several diseases. AIMS: We here examine how danazol and leuprorelin acetate depot treatments exert their anti-inflammatory action. It is plausible that subtle alterations mediated by these treatments and in relation to sHLA may explain the pathophysiology of endometriosis and provide insights towards new therapeutic protocols. METHODS: Indirect enzyme-linked immunosorbent assay (ELISA), using specific monoclonal antibodies, determined serum-soluble class-I and class-II HLA levels. ELISA readings from treated women were compared with normal healthy subjects. RESULTS: Serum-soluble class-I and class-II HLA levels are statistically significantly lower (P < 0.001) in women with endometriosis than in the control groups. However, danazol but not leuprorelin acetate depot administration augments soluble HLA class I and class II (P < 0.01 and P < 0.001, respectively) to normal levels during the treatment period, an increase that may account for the anti-inflammatory effect and the remission observed. CONCLUSIONS: It is shown that one of the underlying causes of endometriosis may be the lack of both circulating class-I and class-II antigen levels. Danazol administration acts via an induced release of these antigens, whose presence correlates with the degree of the inflammatory alleviation obtained. We thus provide evidence that the inflammatory state of the disease appears to be associated with soluble HLA levels because, 3 months after ceasing therapy, the circulating antigens in the serum return to the same levels that correspond to the pathological condition

    COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence

    Get PDF
    Occupational, residential, dietary and environmental exposures to mixtures of synthetic anthropogenic chemicals after World War II have a strong relationship with the increase of chronic diseases, health cost and environmental pollution. The link between environment and immunity is particularly intriguing as it is known that chemicals and drugs can cause immunotoxicity (e.g., allergies and autoimmune diseases). In this review, we emphasize the relationship between long-term exposure to xenobiotic mixtures and immune deficiency inherent to chronic diseases and epidemics/pandemics. We also address the immunotoxicologic risk of vulnerable groups, taking into account biochemical and biophysical properties of SARS-CoV-2 and its immunopathological implications. We particularly underline the common mechanisms by which xenobiotics and SARS-CoV-2 act at the cellular and molecular level. We discuss how long-term exposure to thousand chemicals in mixtures, mostly fossil fuel derivatives, exposure toparticle matters, metals, ultraviolet (UV)–B radiation, ionizing radiation and lifestyle contribute to immunodeficiency observed in the contemporary pandemic, such as COVID-19, and thus threaten global public health, human prosperity and achievements, and global economy. Finally, we propose metrics which are needed to address the diverse health effects of anthropogenic COVID-19 crisis at present and those required to prevent similar future pandemics

    Comparison of RCAS1 and metallothionein expression and the presence and activity of immune cells in human ovarian and abdominal wall endometriomas

    Get PDF
    BACKGROUND: The coexistence of endometrial and immune cells during decidualization is preserved by the ability of endometrial cells to regulate the cytotoxic immune activity and their capability to be resistant to immune-mediated apoptosis. These phenomena enable the survival of endometrial ectopic cells. RCAS1 is responsible for regulation of cytotoxic activity. Metallothionein expression seems to protect endometrial cells against apoptosis. The aim of the present study was to evaluate RCAS1 and metallothionein expression in human ovarian and scar endometriomas in relation to the presence of immune cells and their activity. METHODS: Metallothionein, RCAS1, CD25, CD69, CD56, CD16, CD68 antigen expression was assessed by immunohistochemistry in ovarian and scar endometriomas tissue samples which were obtained from 33 patients. The secretory endometrium was used as a control group (15 patients). RESULTS: The lowest metallothionein expression was revealed in ovarian endometriomas in comparison to scar endometriomas and to the control group. RCAS1 expression was at the highest level in the secretory endometrium and it was at comparable levels in ovarian and scar endometriomas. Similarly, the number of CD56-positive cells was lower in scar and ovarian endometriomas than in the secretory endometrium. The highest number of macrophages was found in ovarian endometriomas. RCAS1-positive macrophages were observed only in ovarian endometriomas. CD25 and CD69 antigen expression was higher in scar and ovarian endometriomas than in the control group. CONCLUSION: The expression of RCAS1 and metallothionein by endometrial cells may favor the persistence of these cells in ectopic localization both in scar following cesarean section and in ovarian endometriosis

    Covid‑19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review)

    No full text
    Italy is currently one of the countries seriously affected by the COVID-19 pandemic. As per 10 April 2020, 147,577 people were found positive in a total of 906,864 tests performed and 18,849 people lost their lives. Among all cases, 70.2% of positive, and 79.4% of deaths occurred in the provinces of Northern Italy (Lombardi, Emilia Romagna, Veneto and Piemonte), where the outbreak first started. Originally, it was considered that the high number of positive cases and deaths in Italy resulted from COVID-19 initially coming to Italy from China, its presumed country of origin. However, an analysis of the factors that played a role in the extent of this outbreak is needed. Evaluating which factors could be specific for a country and which might contribute the most is nevertheless complex, with accompanying high uncertainty. The purpose of this work is to discuss some of the possible contributing factors and their possible role in the relatively high infection and death rates in Northern Italy compared to other areas and countries. © 2020 Spandidos Publications. All rights reserved
    corecore