10,842 research outputs found

    Bound hole states in a ferromagnetic (Ga,Mn)As environment

    Full text link
    A numerical technique is developed to solve the Luttinger-Kohn equation for impurity states directly in k-space and is applied to calculate bound hole wave functions in a ferromagnetic (Ga,Mn)As host. The rich properties of the band structure of an arbitrarily strained, ferromagnetic zinc-blende semiconductor yields various features which have direct impact on the detailed shape of a valence band hole bound to an active impurity. The role of strain is discussed on the basis of explicit calculations of bound hole states.Comment: 9 pages, 10 figure

    Lithographic engineering of anisotropies in (Ga,Mn)As

    Full text link
    The focus of studies on ferromagnetic semiconductors is moving from material issues to device functionalities based on novel phenomena often associated with the anisotropy properties of these materials. This is driving a need for a method to locally control the anisotropy in order to allow the elaboration of devices. Here we present a method which provides patterning induced anisotropy which not only can be applied locally, but also dominates over the intrinsic material anisotropy at all temperatures

    Resonance Patterns of an Antidot Cluster: From Classical to Quantum Ballistics

    Full text link
    We explain the experimentally observed Aharonov-Bohm (AB) resonance patterns of an antidot cluster by means of quantum and classical simulations and Feynman path integral theory. We demonstrate that the observed behavior of the AB period signals the crossover from a low B regime which can be understood in terms of electrons following classical orbits to an inherently quantum high B regime where this classical picture and semiclassical theories based on it do not apply.Comment: 5 pages revtex + 2 postscript figure

    Preparing athletes and teams for the Olympic Games: experiences and lessons learned from the world's best sport psychologists

    Get PDF
    As part of an increased effort to understand the most effective ways to psychologically prepare athletes and teams for Olympic competition, a number of sport psychology consultants have offered best-practice insights into working in this context. These individual reports have typically comprised anecdotal reflections of working with particular sports or countries; therefore, a more holistic approach is needed so that developing practitioners can have access to - and utilise - a comprehensive evidence-base. The purpose of this paper is to provide a panel-type article, which offers lessons and advice for the next generation of aspiring practitioners on preparing athletes and teams for the Olympic Games from some of the world’s most recognised and experienced sport psychologists. The sample comprised 15 sport psychology practitioners who, collectively, have accumulated over 200 years of first-hand experience preparing athletes and/or teams from a range of nations for six summer and five winter Olympic Games. Interviews with the participants revealed 28 main themes and 5 categories: Olympic stressors, success and failure lessons, top tips for neophyte practitioners, differences within one’s own consulting work, and multidisciplinary consulting. It is hoped that the findings of this study can help the next generation of sport psychologists better face the realities of Olympic consultancy and plan their own professional development so that, ultimately, their aspirations to be the world’s best can become a reality

    Optical Gravitational Lensing Experiment. OGLE-1999-BUL-19: The First Multi-Peak Parallax Event

    Get PDF
    We describe a highly unusual microlensing event, OGLE-1999-BUL-19, which exhibits multiple peaks in its light curve. The Einstein radius crossing time for this event is approximately one year, which is unusually long. We show that the motion of the Earth induces these multiple peaks in the light curve, since the relative transverse velocity of the lens projected into the observer plane is very small (v = 12.5 km/s). This is the lowest velocity so far published and we believe that this is the first multiple-peak parallax event ever observed. We also believe that this event may be exhibiting slight binary-source signatures in addition to these parallax-induced multiple peaks. With spectroscopic observations it is possible to test this `parallax plus binary-source' hypothesis and (if this hypothesis turns out to be correct) to simultaneously fit both models and obtain a measurement of the lens mass. Furthermore, spectroscopic observations could also supply information regarding the lens properties, possibly providing another avenue for determining the lens mass. We found that most of the I-band blending is probably caused by light from the lens or a binary companion to the source. However, in the V-band, there appears to be a second blended source 0.35" away from the lensed source. HST observations will be very useful for understanding the nature of the blends. We also suggest that a radial velocity survey of all parallax events will be very useful for further constraining the lensing kinematics and understanding the origins of these events and the excess of long events toward the bulge.Comment: 36 pages, 7 figures. Accepted for publication in MNRA

    Molecular beam epitaxy of high structural quality Bi2Se3 on lattice matched InP(111) substrates

    Full text link
    Epitaxial layers of the topological insulator Bi2Se3 have been grown by molecular beam epitaxy on laterally lattice-matched InP(111)B substrates. High resolution X-ray diffraction shows a significant improvement of Bi2Se3 crystal quality compared to layers deposited on other substrates. The measured full width at half maximum of the rocking curve is Delta omega=13 arcsec, and the (omega-2theta) scans exhibit clear layer thickness fringes. Atomic force microscope images show triangular twin domains with sizes increasing with layer thickness. The structural quality of the domains is confirmed on the microscopic level by transmission electron microscopy.Comment: 4 pages, 4 figure

    MeV-mass dark matter and primordial nucleosynthesis

    Full text link
    The annihilation of new dark matter candidates with masses mXm_X in the MeV range may account for the galactic positrons that are required to explain the 511 keV Îł\gamma-ray flux from the galactic bulge. We study the impact of MeV-mass thermal relic particles on the primordial synthesis of 2^2H, 4^4He, and 7^7Li. If the new particles are in thermal equilibrium with neutrinos during the nucleosynthesis epoch they increase the helium mass fraction for m_X\alt 10 MeV and are thus disfavored. If they couple primarily to the electromagnetic plasma they can have the opposite effect of lowering both helium and deuterium. For mX=4m_X=4--10 MeV they can even improve the overall agreement between the predicted and observed 2^2H and 4^4He abundances.Comment: 11 pages, 10 figures, references and two appendices added, conclusions unchanged; accepted for publication in Phys.Rev.
    • …
    corecore