1,297 research outputs found

    Myelin tetraspan family proteins but no non-tetraspan family proteins are present in the ascidian (Ciona intestinalis) genome

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2005. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 209 (2005): 49-66.Several of the proteins used to form and maintain myelin sheaths in the central nervous system (CNS) and the peripheral nervous system (PNS) are shared among different vertebrate classes. These proteins include one-to-several alternatively spliced myelin basic protein (MBP) isoforms in all sheaths, proteolipid protein (PLP) and DM20 (except in amphibians) in tetrapod CNS sheaths, and one or two protein zero (P0) isoforms in fish CNS and in all vertebrate PNS sheaths. Several other proteins, including 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP), myelin and lymphocyte protein (MAL), plasmolipin, and peripheral myelin protein 22 (PMP22; prominent in PNS myelin), are localized to myelin and myelin-associated membranes, though class distributions are less well studied. Databases with known and identified sequences of these proteins from cartilaginous and teleost fishes, amphibians, reptiles, birds, and mammals were prepared and used to search for potential homologs in the basal vertebrate, Ciona intestinalis. Homologs of lipophilin proteins, MAL/plasmolipin, and PMP22 were identified in the Ciona genome. In contrast, no MBP, P0, or CNP homologs were found. These studies provide a framework for understanding how myelin proteins were recruited during evolution and how structural adaptations enabled them to play key roles in myelination.This work was supported by grant IBN-0402188 from the National Science Foundation (RMG)

    Repeated xenodiagnosis in chronic Chagas’ disease: Effect of a single injection of Prednisolone

    Get PDF

    New species can broaden myelin research: suitability of little skate, Leucoraja erinacea

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Moebius, W., Huemmert, S., Ruhwedel, T., Kuzirian, A., & Gould, R. New species can broaden myelin research: suitability of little skate, Leucoraja erinacea. Life, 11(2), (2021): 136, https://doi.org/10.3390/life11020136.Although myelinated nervous systems are shared among 60,000 jawed vertebrates, studies aimed at understanding myelination have focused more and more on mice and zebrafish. To obtain a broader understanding of the myelination process, we examined the little skate, Leucoraja erinacea. The reasons behind initiating studies at this time include: the desire to study a species belonging to an out group of other jawed vertebrates; using a species with embryos accessible throughout development; the availability of genome sequences; and the likelihood that mammalian antibodies recognize homologs in the chosen species. We report that the morphological features of myelination in a skate hatchling, a stage that supports complex behavioral repertoires needed for survival, are highly similar in terms of: appearances of myelinating oligodendrocytes (CNS) and Schwann cells (PNS); the way their levels of myelination conform to axon caliber; and their identity in terms of nodal and paranodal specializations. These features provide a core for further studies to determine: axon–myelinating cell communication; the structures of the proteins and lipids upon which myelinated fibers are formed; the pathways used to transport these molecules to sites of myelin assembly and maintenance; and the gene regulatory networks that control their expressions.This research received no external funding

    Evaluation of novel ß-ribosidase substrates for the differentiation of Gram-negative bacteria

    Get PDF
    Aims:  To synthesize novel substrates for the detection of β-ribosidase and assess their potential for the differentiation of Gram-negative bacteria. Methods and Results:  Two novel chromogenic substrates, 3′,4′-dihydroxyflavone-4′-β-D-ribofuranoside (DHF-riboside) and 5-bromo-4-chloro-3-indolyl-β-D-ribofuranoside (X-riboside) were evaluated along with a known fluorogenic substrate, 4-methylumbelliferyl-β-D-ribofuranoside (4MU-riboside). A total of 543 Gram-negative bacilli were cultured on media containing either DHF-riboside or X-riboside. Hydrolysis of DHF-riboside or X-riboside resulted in the formation of clearly distinguishable black or blue-green colonies, respectively. Hydrolysis of 4MU-riboside was evaluated in a liquid medium in microtiter trays and yielded blue fluorescence on hydrolysis which was measured using fluorimetry. β-Ribosidase activity was widespread with 75% of strains, including 85·6% of Enterobacteriaceae, showing activity with at least one substrate. Genera that demonstrated β-ribosidase activity included Aeromonas, Citrobacter, Enterobacter, Escherichia, Hafnia, Klebsiella, Morganella, Providencia, Pseudomonas, Salmonella and Shigella. In contrast, strains of Proteus spp., Acinetobacter spp., Yersinia enterocolitica, Vibrio cholerae and Vibrio parahaemolyticus generally failed to demonstrate β-ribosidase activity. Conclusions:  The novel substrates DHF-riboside and X-riboside are effective for the detection of β-ribosidase in agar-based media and may be useful for the differentiation and identification of Gram-negative bacteria. Significance and Impact of the Study:  This is the first report describing the application and utility of chromogenic substrates for β-ribosidase. These substrates could be applied in chromogenic media for differentiation of Gram-negative bacteria

    A life in progress: motion and emotion in the autobiography of Robert M. La Follette

    Get PDF
    This article is a study of a La Follette’s Autobiography, the autobiography of the leading Wisconsin progressive Robert M. La Follette, which was published serially in 1911 and, in book form, in 1913. Rather than focusing, as have other historians, on which parts of La Follette’s account are accurate and can therefore be trusted, it explains instead why and how this major autobiography was conceived and written. The article shows that the autobiography was the product of a sustained, complex, and often fraught series of collaborations among La Follette’s family, friends, and political allies, and in the process illuminates the importance of affective ties as well as political ambition and commitment in bringing the project to fruition. In the world of progressive reform, it argues, personal and political experiences were inseparable

    A novel SDS-stable dimer of a heterogeneous nuclear ribonucleoprotein at presynaptic terminals of squid neurons

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Neuroscience 300 (2015): 381-392, doi:10.1016/j.neuroscience.2015.05.040.The presence of mRNAs in synaptic terminals and their regulated translation are important factors in neuronal communication and plasticity. Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes are involved in the translocation, stability, and subcellular localization of mRNA and the regulation of its translation. Defects in these processes and mutations in components of the hnRNP complexes have been related to the formation of cytoplasmic inclusion bodies and neurodegenerative diseases. Despite much data on mRNA localization and evidence for protein synthesis, as well as the presence of translation machinery, in axons and presynaptic terminals, the identity of RNA-binding proteins involved in RNA transport and function in presynaptic regions is lacking. We previously characterized a strongly basic RNA-binding protein (p65), member of the hnRNP A/B subfamily, in squid presynaptic terminals. Intriguingly, in SDS-PAGE, p65 migrated as a 65 kDa protein, whereas members of the hnRNP A/B family typically have molecular masses ranging from 35 to 42 kDa. In this report we present further biochemical and molecular characterization that shows endogenous p65 to be an SDS-stable dimer composed of ~37 kDa hnRNPA/B-like subunits. We cloned and expressed a recombinant protein corresponding to squid hnRNPA/B-like protein and showed its propensity to aggregate and form SDS-stable dimers in vitro. Our data suggest that this unique hnRNPA/B-like protein co-localizes with synaptic vesicle protein 2 and RNA-binding protein ELAV and thus may serve as a link between local mRNA processing and presynaptic function and regulation.Research was supported by grants to REL from the Fundação de Amparo à Pesquisa do Estado de Sao Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da FMRP-USP (FAEPA). JAD received financial support from the RI-INBRE Program Grant #8 P20 GM103430-12 from the National Institute of General Medical Sciences, NIH, Bethesda, MD. DTPL and GSL received research fellowships from FAPESP and CNPq. REL and JCR received the Productivity-in-Research fellowship from CNPq

    Studies of Posttranslational Modifications in Spiny Dogfish Myelin Basic Protein

    Full text link
    The objective of this investigation was to determine whether nonmammalian myelin basic protein contained charge isomers resulting from extensive posttranslational modifications as seen in mammalian MBP. Four charge isomer components from dogfish MBP have been isolated. These forms arise by phosphorylation and deamidation modifications. Components C1, C2 and C3 have been characterized. We are currently characterizing component C8. Dogfish MBP is less cationic than mammalian MBP and has about 50% lower mobility on a basic pH gel electrophoresis relative to human and to bovine MBP. The mammalian component C1, which is unmodified, is modified in the dogfish by phosphorylation. The reduced electrophoretic mobility is largely attributable to the charge reduction resulting from phosphorylation in serine 72, 83, and 120 or 121 in C1, and C3. In component C2, two or three phosphate groups were distributed among residues 134, 138 and 139. It was found that dogfish amino acid residue 30 was a lysine residue and not a glutamate residue as reported in the literature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45421/1/11064_2004_Article_344513.pd

    Co-option of endogenous retroviruses through genetic escape from TRIM28 repression

    Get PDF
    Endogenous retroviruses (ERVs) have rewired host gene networks. To explore the origins of co-option, we employed an active murine ERV, IAPEz, and an embryonic stem cell (ESC) to neural progenitor cell (NPC) differentiation model. Transcriptional silencing via TRIM28 maps to a 190 bp sequence encoding the intracisternal A-type particle (IAP) signal peptide, which confers retrotransposition activity. A subset of "escapee" IAPs (∼15%) exhibits significant genetic divergence from this sequence. Canonical repressed IAPs succumb to a previously undocumented demarcation by H3K9me3 and H3K27me3 in NPCs. Escapee IAPs, in contrast, evade repression in both cell types, resulting in their transcriptional derepression, particularly in NPCs. We validate the enhancer function of a 47 bp sequence within the U3 region of the long terminal repeat (LTR) and show that escapee IAPs convey an activating effect on nearby neural genes. In sum, co-opted ERVs stem from genetic escapees that have lost vital sequences required for both TRIM28 restriction and autonomous retrotransposition
    • …
    corecore