12 research outputs found
Oxidative stress in rheumatoid arthritis: what the future might hold regarding novel biomarkers and add-on therapies
Numerous rheumatologic autoimmune diseases, among which rheumatoid arthritis, are chronic inflammatory diseases capable of inducing multiple cumulative articular and extra-articular damage, if not properly treated. Nevertheless, benign conditions may, similarly, exhibit arthritis as their major clinical finding, but with short-term duration instead, and evolve to spontaneous resolution in a few days to weeks, without permanent articular damage. Such distinction-self-limited arthritis with no need of immunosuppressive treatment or chronic arthritis at early stages?-represents one of the greatest challenges in clinical practice, once many metabolic, endocrine, neoplastic, granulomatous, infectious diseases and other autoimmune conditions may mimic rheumatoid arthritis. Indeed, the diagnosis of rheumatoid arthritis at early stages is a crucial step to a more effective mitigation of the disease-related damage. As a prototype of chronic inflammatory autoimmune disease, rheumatoid arthritis has been linked to oxidative stress, a condition in which the pool of reactive oxygen species increases over time, either by their augmented production, the reduction in antioxidant defenses, or the combination of both, ultimately implying compromise in the redox signaling. The exact mechanisms through which oxidative stress may contribute to the initiation and perpetuation of local (in the articular milieu) and systemic inflammation in rheumatoid arthritis, particularly at early stages, still remain to be determined. Furthermore, the role of antioxidants as therapeutic adjuvants in the control of disease activity seems to be overlooked, as a little number of short studies addressing this issue is currently found. Thus, the present review focuses on the binomial rheumatoid arthritis-oxidative stress, bringing insights into their pathophysiological relationships, as well as the implications of potential diagnostic oxidative stress biomarkers and therapeutic interventions directed to the oxidative status in patients with rheumatoid arthritis
Growth inhibitory effects of 3âČ-nitro-3-phenylamino nor-beta-lapachone against HL-60: A redox-dependent mechanism
AbstractIn this study, the cytotoxicity, genotoxicity and early ROS generation of 2,2-dimethyl-(3H)-3-(N-3âČ-nitrophenylamino)naphtho[1,2-b]furan-4,5-dione (QPhNO2) were investigated and compared with those of its precursor, nor-beta-lapachone (nor-beta), with the main goal of proposing a mechanism of antitumor action. The results were correlated with those obtained from electrochemical experiments held in protic (acetate buffer pH 4.5) and aprotic (DMF/TBABF4) media in the presence and absence of oxygen and with those from dsDNA biosensors and ssDNA in solution, which provided evidence of a positive interaction with DNA in the case of QPhNO2. QPhNO2 caused DNA fragmentation and mitochondrial depolarization and induced apoptosis/necrosis in HL-60 cells. Pre-treatment with N-acetyl-l-cysteine partially abolished the observed effects related to the QPhNO2 treatment, including those involving apoptosis induction, indicating a partially redox-dependent mechanism. These findings point to the potential use of the combination of pharmacology and electrochemistry in medicinal chemistry
Alternating Layers Of Iron(iii) Tetra(n-methyl-4-pyridyl) -porphyrin And Copper Tetrasulfonated Phthalocyanine For Amperometric Detection Of 4-nitrophenol In Nanomolar Levels
The present work describes the development of a highly sensitive amperometric sensor for 4-NP in nanomolar levels using a glassy carbon electrode modified with alternating layers of CuTSPc and FeT4MPyP. After optimizing the operational conditions, the sensor provided a linear response range for 4-NP from 5 up to 100 nmol L-1 with sensitivity, detection, and quantification limits of 14 nA L nmol-1, 1.9 nmol L-1, and 5.4 nmol L-1, respectively. The proposed sensor showed a stable response for at least 200 successive determinations. This modified electrode can be used to the determination of 4-NP in water samples. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.202123332339Nevskaia, D.M., Castillejos-Lopez, E., Munoz, V., Guerrero-Ruiz, A., (2004) Environ. Sci. Technol, 38, p. 5786Davi, M.L., Gnudi, F., (1999) Water Res, 33, p. 3213(2004) National Recommended Water Quality Criteria, , U.S. Environmental Protection Agency EPAWilliams, A.I., (1971) Analyst, 96, p. 296Frenzel, W., Frenzel, J.O., Moeller, J., (1992) Anal. Chim. Acta, 261, p. 253Realini, P.A., (1981) J. Chromatogr. Sci, 19, p. 124Berger, T.A., Deye, J.F., (1991) Chromatogr. Sci, 29, p. 54Brage, C., Sjöström, K.J., (1991) Chromatography, 538, p. 303Emerson, E., (1948) J. Org. Chem, 8, p. 417Emerson, E., Kelly, K., (1948) J. Org. Chem, 13, p. 532Ettinger, M., Ruchhoft, C., Lishka, R., (1951) Anal. Chem, 23, p. 1783Fiamegos, Y.C., Stalikas, C.D., Pilidis, G.A., Karayannis, M.I., (2000) Anal. Chim. Acta, 403, p. 315Fiamegos, Y.C., Stalikas, C.D., Pilidis, G.A., Karayannis, M.I., (1997) Anal. Chim. Acta, 356, p. 165Fiamegos, Y., Stalikas, C., Pilidis, G., (2002) Anal. Chim. Acta, 467, p. 105Luz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., (2004) Talanta, 64, p. 935Pedrosa, V.D., Codognoto, L., Avaca, L.A., (2003) J. Braz. Chem. Soc, 14, p. 530Nafaa, A., Monser, M.L., Toumi, K.B., (2003) Anal. Chim. Acta, 495, p. 69Ljeri, V.S., Jaiswal, P.V., Scrivastava, A.K., (2001) Anal. Chim. Acta, 439, p. 291Lima, P.R., Santos, W.J.R., Oliveira, A.B., Goulart, M.O.F., Kubota, L.T., (2008) J. Pharm. Biomed. Anal, 47, p. 758P. R. Lima, W. J. R. Santos, R. de C. S. Luz, F. S. Damos, A. B. Oliveira, M. O. F. Goulart, L. T. Kubota, J. Electroanal. Chem. 2008, 612, 87Sotomayor, M.D.P., Kubota, L.T., Tanaka, A.A., (2003) Electrochim. Acta, 48, p. 855Sotomayor, M.D.P., Kubota, L.T., Tanaka, A.A., (2002) Anal. Chim. Acta, 455, p. 215Wring, S.A., Hart, J.P., (1992) Analyst, 1215, p. 117Yang, S.M., Li, Y.M., Jiang, X.M., Chen, Z.C., Lin, X.F., (2006) Sens. Actuators B, Chem, 114, p. 774Huang, H.X., Qian, D.J., Nakamura, N., Nakamura, C., Wakayama, T., Miyake, J., (2004) Electrochim. Acta, 49, p. 1491Sun, C., Zhao, J., Xu, H., Sun, Y., Zhang, X., Shen, J., (1998) Talanta, 46, p. 15Manriquez, J., Bravo, J.L., Granados, S.G., Succar, S.S., Bied Charreton, C., Ordaz, A.A., Bedioui, F., (1999) Anal. Chim. Acta, 378, p. 159Mimica, D., Zagal, J.H., Bedioui, F., (2001) Electrochim. Commun, 3, p. 435Ozoemena, K.I., Nyokong, T., (2005) Talanta, 67, p. 162Ozoemena, K.I., Zhao, Z., Nyokong, T., (2005) Electrochem. Commun, 7, p. 679Weber, J.H., Busch, D.H., (1965) Inorg. Chem, 4, p. 469Rocha, J.R.C., Angnes, L., Bertotti, M., Araki, K., Toma, H.E., (2002) Anal. Chim. Acta, 452, p. 23Hu, S., Xu, C., Wang, G., Cui, D., (2001) Talanta, 54, p. 115de Groot, M.T., Merkx, M., Koper, M.T.M., (2007) C. R. Chimie, 10, p. 414Mayer, I., Nakamura, M., Toma, H.E., Araki, K., (2006) Electrochim. Acta, 52, p. 263Richard, J.A., Whitson, P.E., Evans, D.H., (1975) J. Electroanal. Chem, 63, p. 3111Papouchado, L., Sandford, R.W., Petrie, G., Adams, R.N., (1975) J. Electroanal. Chem, 65, p. 275Pariente, F., Lorenzo, E., Tobalina, F., Abruna, H.D., (1995) Anal. Chem, 67, p. 3936Bard, A.J., Faulkner, L.R., (2001) Electrochemical methods, Fundamentals and applications, , Wiley, New YorkNiesner, R., Heintz, A., (2000) J. Chem. Eng. Data, 45, p. 1121Yongian, N., Wang, L., Serge, K., (2001) Anal. Chim. Acta, 431, p. 101Rocha, J.R.C., Demets, G.J.-F., Bertotti, M., Araki, K., Toma, H.E., (2002) J. Electroanal. Chem, 526, p. 69Beissenhirtz, M.K., Scheller, F.W., Lisdat, F., (2004) Anal. Chem, 76, p. 4665Rocha, J.R.C., Angnes, L., Bertotti, M., Araki, K., Toma, H.E., (2002) Anal. Chim. Acta, 452, p. 23(1987) Analyst, 112, p. 199. , Analytical Methods CommiteeCordero-Rando, M.M., Barea-Zamora, M., BarberĂĄ-Salvador, J.M., Naranjo-RodrĂguez, I., Munoz-Leyva, J.A., Cisneros, J.L.H.-H., (1999) Mikrochim. Acta, 132, p. 7Yang, C., (2004) Microchim. Acta, 148, p. 8
Reactive Oxygen And Nitrogen Species, Antioxidants And Markers Of Oxidative Damage In Human Blood: Main Analytical Methods For Their Determination [espĂ©cies Reativas De OxigĂȘnio E De NitrogĂȘnio, Antioxidantes E Marcadores De Dano Oxidativo Em Sangue Humano: Principais MĂ©todos AnalĂticos Para Sua Determinação]
We review here the chemistry of reactive oxygen and nitrogen species, their biological sources and targets; particularly, biomolecules implicated in the redox balance of the human blood, and appraise the analytical methods available for their detection and quantification. Those biomolecules are represented by the enzymatic antioxidant defense machinery, whereas coadjutant reducing protection is provided by several low molecular weight molecules. Biomolecules can be injured by RONS yielding a large repertoire of oxidized products, some of which can be taken as biomarkers of oxidative damage. Their reliable determination is of utmost interest for their potentiality in diagnosis, prevention and treatment of maladies.30513231338Schafer, F.Q., Buettner, G.R., (2001) Free Radical Biol. Med, 30, p. 1191Grow, A.J., Ischiropoulos, H.J., (2001) J. Cell. Physiol, 187, p. 277Finkel, T., Holbrook, N.J., (2000) Nature (London, U. K.), 408, p. 239Wiseman, H., (1996) J. Nutr. Biochem, 7, p. 2Barreiros, A.L.B.S., David, J.M., David, J.P., (2006) Quim. Nova, 29, p. 113Halliwell, B., Murcia, M.A., Chirico, S., Aruoma, O.I., (1995) Crit. Rev. Food Sci. Nutr, 35, p. 7Guerra, E.J.I., (2001) Anales Medicina Interna, 18, p. 326Zwart, L.L., Meerman, J.H.N., Commandeur, J.N.M., Vermeulen, N.P.E., (1999) Free Radical Biol. Med, 26, p. 202Gutteridge, J.M.C., (1993) Free Radical Res. Comm, 19, p. 141Pagano, G., Korkina, L.G., Brunk, U.T., Chessa, L., Degan, P., Del Principe, D., Kelly, F.J., Franceschi, C., (1998) Medical Hypothesis, 51, p. 253LaBaer, J., (2005) J. Proteome Res, 4, p. 1053Hill, B., (2005) Curr. Sep, 21, p. 45Kadiiska, M.B., Gladen, B.C., Baird, D.D., Dikalova, A.E., Sohal, R.S., Hatch, G.E., Jones, D.P., Barrett, J.C., (2000) Free Radical Biol. Med, 28, p. 838Kadiiska, M. B.Gladen, B. C.Baird, D. D.;Germolec, D.Graham, L. B.Parker, C. E.Nyska, A.Wachsman, J. T.Ames, B. N.Basu, S.Brot, N.FitzGerald, G. A,Floyd, R. A.George, M.Heinecke, J. W.Hatch, G. E.Hensley, K.Lawson, J. A.Marnett, L. J.Morrow, J. D.Murray, D. M.Plastaras, J.Roberts II, L. J.Rokach, J.Shigenaga, M. K.Sohal, R. S.Sun, J.Tice, R. R.van Thiel, D. H.Wellner, D.Walter, P. B.Tomer, K. B.Mason, R. P.Barrett, J. C.Free Radical Biol. Med. 2005, 38, 698Burtis, C.A., Ashwood, E.R., (2002) Tietz/Fundamentos de quĂmica clĂnica, , 4a. ed, Guanabara Koogan: Rio de JaneiroJacobs, J.M., Adkins, J.N., Qian, W.-J., Liu, T., Shen, Y., Camp II, D.G., Smith, R.D., (2005) J. Proteome Res, 4, p. 1073Anderson, N.L., Anderson, N.G., (2002) Mol. Cell Proteom, 1, p. 845Halliwell, B., Gutteridge, J.M.C., (2002) Free Radical in Biology and Medicine, , 3rd ed, Oxford University Press: Oxford, 4 th edPolidori, M.C., Stahl, W., Etchler, O., Niestroj, I., Sies, H., (2001) Free Radical Biol. Med, 30, p. 456Ghiselli, A., Serafini, M., Natella, F., Scaccini, C., (2000) Free Radical Biol. Med, 29, p. 1106Prior, R.L., Cao, G., (1999) Free Radical Biol. Med, 27, p. 1173Cao, G., Prior, R.L., (1998) Clin. Chem, 44, p. 1309. , Washington, DC, U. SSĂĄnchez-Moreno, C., (2002) Food Sci. Tech. Int, 8, p. 121Janaszewska, A., Bartosz, G., (2002) Scand. J. Clin. Lab. Invest, 62, p. 231Wayner, D.D.M., Burton, G.W., Ingold, K.U., (1985) FEBS Lett, 187, p. 33ThĂ©rond, P., Bonnefont-Rousselot, D., Davit-Spraul, A., Conti, M., Legrand, A., (2000) Curr. Opin. Clin. Nutr. Metab. Care, 3, p. 373Huang, D., Ou, B., Prior, R.L., (2005) J. Agric. Food Chem, 53, p. 1841Salvi, A., Bbruhlmann, C., Migliavacca, E., Carrupt, P.A., Hostettmann, K., Testa, B., (2002) Helv. Chim. Acta, 85, p. 867Regoli, F., Winston, G.W., (1999) Toxicol. Appl. Pharmacol, 156, p. 96Benzie, I.F.F., Strain, J.J., (1996) Anal. Biochem, 239, p. 70Prior, R.L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Jacob, R., (2003) J. Agric. Food Chem, 51, p. 3273Ziyatdinova, G.K., Voloshin, A.V., Gilmutdinov, A.K., Budnikov, H.C., Ganeev, T.S., (2006) J. Pharm. Biomed. Anal, 40, p. 958Re, R., Pelegrinni, N., Protegentte, A., Pannala, A., Yang, M., Rice-Evans, C., (1999) Free Radical Biol Med, 26, p. 1239Niki, E., Yoshida, Y., (2005) J. Med. Invest, 52, p. 228. , SBandy, B., Bechara, E.J.H., (2001) J. Bioenerg. Biomembr, 33, p. 269McCord, J., Fridovich, I., (1972) J Biol. Chem, 247, p. 3170Misha, H.P., Fridovich, I., (1969) J Biol. Chem, 244, p. 6049Netto, C.B., Siqueira, I.R., Portela, L.V., Tavares, M.P., Souza, D.O., Giuliani, R., Gonçalves, C.A., (2004) Clin. Biochem, 37, p. 134Gaeta, L.M., Tozzi, G., Pastore, A., Federici, G., Bertini, E., Piemonte, F., (2002) Clin. Chim. Acta, 322, p. 117Aebi, H., (1984) Meth. Enzimol, 105, p. 121Rayman, M.P., (2000) Lancet, 356, p. 233Czuczeiko, J., Zachara, B.A., Staubach-Topczewska, E., Halota, W., Kedziora, J., (2003) Acta Biochim. Pol, 50, p. 1147Amaya-Farfan, J., Domene, S.M.A., Padovani, R.M., (2001) Rev. Nutr. Campinas, 14, p. 71Burk, R. F.Levander, O. A. Em Tratado de Nutrição Moderna na SaĂșde e na DoençaShils, M. E.Olson, J. AShike, M.Ross, A C., eds.9a ed., Manole: SĂŁo Paulo, 2002, I., cap. 14Mills, G.C., (1957) J. Biol. Chem, 229, p. 189Mills, G.C., (1958) J. Biol. Chem, 589, p. 189Paglia, D.E., Valentine, W.N., (1967) J. Lab. Clin. Med, 70, p. 158Pinto, R.E., Bartley, W., (1969) Biochem. J, 11, p. 67Armstrong, D., (1998) Free Radical and Antioxidant Protocols, 108. , Humana Press: New JerseyAlves, A., Macedo, D.V., Kubota, L.T., (2003) Anal. Biochem, 323, p. 33Rover Jr., L., Höehr, N.F., Vellasco, A.P., Kubota, L.T., (2001) Quim. Nova, 24, p. 112Sies, H., (1999) Free Radical Biol. Med, 27, p. 916Arkeoobom, T.P.M., Sies, H., (1981) Meth. Enzymol, 77, p. 373Tietze, F., (1965) Anal. Biochem, 27, p. 502Calvo-Marzal, P., Chumbimuni-Torres, K.Y., Hoehr, N.F., Neto, G.D., Kubota, L.T., (2004) Sens. Actuators, B, 100, p. 333Gandra, P.G., Alves, A.A., Macedo, D.V., Kubota, L.T., (2004) Quim. Nova, 17, p. 980Turunen, M., Olsson, J., Dallner, G., (2004) Biochem. Biphys. Acta, 1660, p. 171Tang, P.H., Miles, M.V., De Grauw, A., Hershey, A., Pesce, A., (2001) Clin. Chem.(Washington, DC, U.S.), 47, p. 256Theriault, A., Chao, J.-T., Wang, Q., Gapor, A., Adeli, K., (1999) Clin. Biochem, 32, p. 309Buettner, G.R., (1993) Arch. Biochem. Biophys, 300, p. 535Katepe, M., (2004) LCGC North Am, 22, p. 362El-Agamey, A., (2004) Arch. Biochem. Biophys, 430, p. 37Omenn, G.S., Goodman, G.E., Thornquist, M.D., Balmes, J., Cullen, M.R., Glass, A., Keogh, J.P., Hammar, S., (1996) N. Engl. J. Med, 334, p. 1150Rapola, J.M., Virtamo, J., Ripatti, S., Huttunen, J.K., Albanes, D., Taylor, P.R., Heinonen, O.P., (1997) Lancet, 349, p. 1715Nirenberg, D.W., (1985) J. Chromatogr, 339, p. 273Turnlund, J. R. Em ref. 44, I., cap. 12Vasconcelos, S. M. L.Avaliação Nutricional de Enfermos nas Diversas Etapas da Vida, 2a ed., EDUFAL: MaceiĂł, 2003Fox, P.L., Mukhopadhayay, C., Ehrenwald, E., (1995) Life Sci, 56, p. 1749Akaike, T., (2000) Free Radical Res, 33, p. 461Petersen, D.R., Doorn, J.A., (2004) Free Radical Biol. Med, 37, p. 937Giammarioli, S., Filesi, C., Sanzini, E., (1999) Ann. Ist. Super. SanitĂĄ, 35, p. 563McCall, M.R., Balz, F., (1999) Free Radical Biol. Med, 26, p. 1034Yoshina, K., Matsuura, T., Sano, M., Saito, S., Tomita, I.F., (1986) Chem. Pharm. Bull, 34, p. 1694Holley, A.E., Walker, M.K., (1993) Free Radical Biol. Med, 15, p. 281Roberts, L.J., Morrow, J.D., (2000) Free Radical Biol. Med, 28, p. 505Shacter, E., (2000) Drug Metab. Res, 32, p. 307Berlett, B.S., Stadtman, E.R.E., (1997) J. Biol. Chem, 272, p. 20313Sobal, G., Menzel, J., Sinzinger, H., (2000) Prostaglandins, Leukotrienes Essent. Fatty-Acids, 63, p. 177Levine, R.L., (1990) Meth. Enzymol, 186, p. 464Levine, R.L., (2002) Free Radical Biol. Med, 32, p. 790Bradford, M.M., (1976) Anal. Biochem, 72, p. 248Radi, R., Peluffo, G., Alvarez, M.N., Naviliat, M., Cayota, A., (2001) Free Radical Biol. Med, 30, p. 463Bonini, M.G., Radi, R., Ferrer-Sueta, G., Ferreira, A.M.C., Augusto, O., (1999) J. Biol. Chem, 274, p. 108092Trujillo, M., Folkes, L., Bartesaghi, S., Kalyanaraman, B., Wardman, P., Radi, R., (2005) Free Radical Biol. Med, 39, p. 279Hensley, K., Williamson, K.S., Floyd, R.A., (2000) Free Radical Biol. Med, 28, p. 520Rojas, E., Lopez, M.C., Valverde, M., (1999) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 722, p. 225Fairbain, D.W., Olive, P.L., O'Neil, K.L., (1995) Mutat. Res, 339, p. 37McKelvey-Martin, V.J., Green, M.H.L., Schemezer, P., Pool-Zobel, B.L., De MĂ©o, M.P., Collins, A., (1993) Mutat. Res, 288, p. 47Houtgraaf, J.H., Vermissen, J., Vander Giessen, W.J., (2006) Cardiovasc. Revasc. Med, 7, p. 165Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M., Telser, J., (2007) Int. J. Biochem. Cell Biol, 39, p. 44Young, I.S., (1994) Free Radical Biol. Med, 16, p. 397Lovell, M.A., (1995) Neurology, 45, p. 1594Sundaram, R.K., (1996) Cli. Sci, 90, p. 255Pedro-Botet, J., Covas, M.I., Martin, S., Rubies-Prat, J., (2000) Hypertension, 14, p. 343RĂ©don, J., Oliva, M.R., Tormos, C., Giner, V., Chaves, J., Iradi, A., SĂĄez, T., (2003) Hypertension, 41, p. 1096Khullar, J., Relan, V., Sherawat, B.S., (2004) Hypertension, 43, p. 7Vitzthum, F., Behrens, F., Anderson, N.L., Shaw, J.H., (2005) J. Proteome Res, 4, p. 1086Frei, B., (1995) Crit. Rev. Food Sci. Nutr, 35, p. 83Abuja, P.M., Albertini, R., (2001) Clin. Chim. Acta, 306, p.
Electrochemical Study Of Methyl 2-[p-nitrophenyi(hydroxy)methyl]acrylate, An Anticancer Drug, In The Presence Of Gsh And Dsdna
Electrochemical experiments (CV, DPV, SWV, CPE) with methyl 2-[p-nitrophenyl(hydroxy) methyl] acrylate (1) were performed in protic (EtOH + phosphate buffer 1:9, 0.1 mol L-1, pH 6.9 and EtOH + phosphate buffer: 1:9, 0.1 mol L1, pH 9.4) and aprotic (DMF + TBAP, 0.1 mol L-1) media. The reduction behaviours were typical of nitroaromatics, with an additional wave, in aprotic medium, related to the reduction of the olefin. Electrolysis, in protic media, furnished a reduced dimer. The incubation of 1 into a dsDNA biosensor revealed, that, after reduction of the nitroaromatic function, diagnostic oxidation peaks of the nucleobases were observed, indicative of interaction between them. GSH influenced the reduction behaviour of 1. Direct reduction of 1, in phosphate buffer, pH 9.38, to a stable nitroso/GSH adduct is facilitated. These electrochemical results help in the understanding of the anticancer activity of 1 that can be considered a hypoxia targeted bioreductive agent with a glutathione depleting function. copyright The Electrochemical Society.329137146Rauf, S., Gooding, J.J., Akhtar, K., Ghauri, M.A., Rahman, M., Anwar, M.A., Khalid, A.M., (2005) J. Pharm. Biomed. Anal, 37, p. 205Russo, A., Degraff, W., Friedman, N., Mitchell, J.B., (1986) Cancer Res, 46, p. 2845Tew, K.D., (1994) Cancer Res, 54, p. 4313Berube, L.R., Farah, S., McClelland, R.A., Rauth, A.M., (1992) Int. J. Radiat. Oncol. Biol. Phys, 22, p. 817Griffith, O.W., Meister, A., (1979) J. Biol. Chem, 254, p. 7558Williamson, J.M., Boettcher, B., Meister, A., (1982) Proc. Natl. Acad. Sci. USA, 79, p. 6246McCarthy, T.J., Hayes, E.P., Schwartz, C.S., Witz, G., (1994) Fundam. Appl. Toxicol, 22, p. 543Kohn, L.K., Pavam, C.H., Veronese, D., Coelho, F., De Carvalho, J.E., Almeida, W.P., (2006) Eur. J. Med. Chem, 41, p. 738De Abreu, F.C., Ferraz, P.A.L., Goulart, M.O.F., (2002) J. Braz. Chem. Soc, 13, p. 19Squella, J.A., Bollo, S., NĂșñez-Vergara, L.J., (2005) Current Org. Chem, 9, p. 565JuliĂŁo, M.D.D.S., Ferreira, E.I., Ferreira, N.G., Serrano, S.H.P., (2006) Electrochim. Acta, 51, p. 5080A. M. O. Brett, M.O.F.Goulart and F.C. de Abreu, Biosens. Bioelectron., 17, 913 (2002)Brett, A.M.O., Serrano, S.H.P.J., Piedade, A.P., (1999) Comprehensive Chemical Kinetics, 37, pp. 91-119. , R. G. Compton and H. G. Hancock, Editors, Elsevier: AmsterdamCoelho, F., Almeida, W.P., Mateus, C.R., Veronese, D., Lopes, E.C.S., Silvira, G.P.S., Rossi, R.C., Pavam, C.H., (2002) Tetrahedron, 58, p. 7437Lund, H., Cathodic Reduction of Nitro and Related Compounds (2001) Organic Electrochemistry, p. 389. , 4th Ed, H. Lund and O. Hammerich, Editors, p, Marcel Dekker, New YorkMcClelland, R.A., (1990) Selective Activation of Drugs by Redox Processes, p. 125. , G.E. Adams, A. Breccia, E.M. Fielden and P. Wardman, Editors, p, Plenum Press, New YorkTocher, J.H., Edwards, D.I., (1995) Biochem. Pharmacol, 50, p. 136
Electrochemical Study Of Methyl 2- [p -nitrophenyl(hydroxy)methyl]acrylate
Electrochemical experiments with methyl 2- [p -nitrophenyl(hydroxy)methyl] acrylate (1) were performed in protic (EtOH+phosphate buffer 1:9, 0.1 mol L-1, pH 6.9; EtOH+phosphate buffer+NaOH 1:9, 0.1 mol L-1 or 0.2 mol L-1, pH 9.4 and EtOH+ NaHCO3 +NaOH 2:8, 0.18 mol L-1, pH 9.6) and aprotic [dimethylformamide (DMF)+tetrabutylammonium perchlorate (TBAP), 0.1 mol L-1] media. The primary reduction behavior in aprotic medium was typical of nitroaromatics along with an additional wave related to the reduction of the acrylate function. Kinetic analysis carried out in aprotic and aqueous basic media pointed out to the high stability of the electrogenerated nitro radical anion, especially in DMF+TBAP. Reduced (GSH) and oxidized (GSSG) gluthatione in phosphate buffer influenced the reduction behavior of 1, due mainly to protonation effects. Direct reduction of 1, in the presence of GSH, led to a transient nitroso-GS adduct. In the presence of GSSG, hydrogen-bonding-associated GSSG-hydroxylamine was the main product. Electrochemical studies of 1, in the presence of oxygen, showed no chemical reactivity between O2 and 1 -. These electrochemical results help in the understanding of the anticancer activity of 1 that can be considered a bioreductive agent with a glutathione depleting function. © 2007 The Electrochemical Society.15411P121P129Garret, M.D., Workman, P., (1999) Eur. J. Cancer, 35, p. 2010Russo, A., Degraff, W., Friedman, N., Mitchell, J.B., (1986) Cancer Res., 46, p. 2845Tew, K.D., (1994) Cancer Res., 54, p. 4313Griffith, O.W., Meister, A., (1979) J. Biol. Chem., 254, p. 7558Williamson, J.M., Boettcher, B., Meister, A., (1982) Proc. Natl. Acad. Sci. U.S.A., 79, p. 6246Kirlin, W.G., Cai, J., Thompson, S.A., Diaz, D., Kavanagh, T.J., Jones, D.P., (1999) Free Radic Biol. Med., 27, p. 1208Powis, G., Gasdaka, J.R., Baker, A., (1997) Adv. Pharmacol. (San Diego), 38, p. 329Berube, L.R., Farah, S., McClelland, R.A., Rauth, A.M., (1992) Int. J. Radiat. Oncol., Biol., Phys., 22, p. 817McCarthy, T.J., Hayes, E.P., Schwartz, C.S., Witz, G., (1994) Fundam. Appl. Toxicol., 22, p. 543Kohn, L.K., Pavam, C.H., Veronese, D., Coelho, F., De Carvalho, J.E., Almeida, W.P., (2006) Eur. J. Med. Chem., 41, p. 738Kundu, M.K., Sundar, N., Kumar, S.K., Bhat, S.V., Biswas, S., Valecha, N., (1999) Bioorg. Med. Chem. Lett., 9, p. 731De Abreu, F.C., Ferraz, P.A.L., Goulart, M.O.F., (2002) J. Braz. Chem. Soc., 13, p. 19Squella, J.A., Bollo, S., NĂșez-Vergara, L.J., (2005) Curr. Org. Chem., 9, p. 565. , 1385-2728 10.2174/1385272053544380Da JuliĂŁo, D.M.S., Ferreira, E.I., Ferreira, N.G., Serrano, S.H.P., (2006) Electrochim. Acta, 51, p. 5080Tocher, J.H., Edwards, D.I., (1995) Biochem. Pharmacol., 50, p. 1367Bollo, S., Gunckel, S., Nunez-Vergara, L.J., Chauviere, G., Squella, J.A., (2005) Electroanalysis, 17, p. 134Coelho, F., Almeida, W.P., Mateus, C.R., Veronese, D., Lopes, E.C.S., Silveira, G.P.S., Rossi, R.C., Pavam, C.H., (2002) Tetrahedron, 58, p. 7437Krezel, A., Bal, W., (2003) Org. Biomol. Chem., 1, p. 3885Olmstead, M.L., Nicholson, R.S., (1969) Anal. Chem., 41, p. 862Bard, A.J., Faulkner, R.L., (2000) Electrochemical Methods, Fundamentals and Applications, p. 240. , 2nd ed., Wiley and Sons, New YorkCarbajo, L., Bollo, S., NĂșez-Vergara, L.J., Campero, A., Squella, J.A., (2002) J. Electroanal. Chem., 531, p. 187Lund, H., (2001) Organic Electrochemistry, p. 389. , 4th ed., H.Lund and O.Hammerich, Editors, Marcel Dekker, New YorkGrimshaw, J., (2001) Organic Electrochemistry: An Introduction and A Guide., pp. 411-434. , 3rd ed., H.Lund, and O.Hammerich, Editors, Marcel Dekker, New YorkZuman, P., Fijalek, Z., Dumanovic, D., Suznjevic, D., (1992) Electroanalysis, 4, p. 783Nicholson, R.S., Shain, I., (1964) Anal. Chem., 36, p. 706McClelland, R.A., (1990) Selective Activation of Drugs by Redox Processes, p. 125. , G. E.Adams, A. Breccia, E. M.Fielden, and P.Wardman, Editors, Plenum Press, New YorkWardman, P., (1986) Environ. Health Perspect., 64, p. 309Aguilar-Martinez, M., MacĂas-Ruvalcaba, N.A., Bautista-MartĂnez, J.A., GĂłmez, M., GonzĂĄlez, F.J., GonzĂĄlez, I., (2004) Curr. Org. Chem., 8, p. 1721Miller, C., Folkes, L.K., Mottley, C., Wardman, P., Mason, R.P., (2002) Arch. Biochem. Biophys., 397, p. 113Eyer, P., (1979) Chem. Biol. Interact., 24, p. 227Kazanis, S., McClelland, R., (1992) J. Am. Chem. Soc., 114, p. 3052Clancy, R., Cederbaum, A.I., Stoyanovsky, D.A., (2001) J. Med. Chem., 44, p. 2035Singh, R.J., Hogg, N., Joseph, I., Kalyanaraman, B., (1996) J. Biol. Chem., 271, p. 18596SoulÌre, L., Sturm, J.-C., NĂșez-Vergara, L.J., Hoffmann, P., áčrĂ, J., (2001) Tetrahedron, 57, p. 7137How, N., (2000) Free Radic Biol. Med., 28, p. 147
Growth Inhibitory Effects Of 3'-nitro-3-phenylamino Nor-beta-lapachone Against Hl-60: A Redox-dependent Mechanism
In this study, the cytotoxicity, genotoxicity and early ROS generation of 2,2-dimethyl-(3H)-3-(N-3'-nitrophenylamino)naphtho[1,2-b]furan-4,5-dione (QPhNO 2) were investigated and compared with those of its precursor, nor-beta-lapachone (nor-beta), with the main goal of proposing a mechanism of antitumor action. The results were correlated with those obtained from electrochemical experiments held in protic (acetate buffer pH 4.5) and aprotic (DMF/TBABF 4) media in the presence and absence of oxygen and with those from dsDNA biosensors and ssDNA in solution, which provided evidence of a positive interaction with DNA in the case of QPhNO 2. QPhNO 2 caused DNA fragmentation and mitochondrial depolarization and induced apoptosis/necrosis in HL-60 cells. Pre-treatment with N-acetyl-l-cysteine partially abolished the observed effects related to the QPhNO 2 treatment, including those involving apoptosis induction, indicating a partially redox-dependent mechanism. These findings point to the potential use of the combination of pharmacology and electrochemistry in medicinal chemistry. © 2012 Elsevier Ltd.264585594Asche, C., Antitumour quinones (2005) Mini-Rev. Med. Chem., 5, pp. 449-467Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidmann, J.G., Struhl, K., (1990) Current Protocols in Molecular Biology, 2. , John Wiley & Sons, Inc., New YorkBova, M.P., Mattson, M.N., Vasile, S., Tam, D., Holsinge, L., Bremer, M., Hui, T., Fukuto, J.M., The oxidative mechanism of action of ortho-quinone inhibitors of protein-tyrosine phosphatase alpha is mediated by hydrogen peroxide (2004) Arch. Biochem. Biophys., 429, pp. 30-41Brett, A.M.O., Goulart, M.O.F., de Abreu, F.C., Reduction of lapachones and their reaction with L-cysteine and mercaptoethanol on glassy carbon electrodes (2002) Bioelectrochemistry, 56, pp. 53-55Cavalcanti, J.C.M., Oliveira, N.V., de Moura, M.A.B.F., Chaves, J.B., Alves, R.J., de Abreu, F.C., Goulart, M.O.F., Effect of the leaving group on the electrodic reduction mechanism of anti-Helicobacter pylori metronidazole derivatives, in aprotic and protic media (2004) Bioelectrochemistry, 63, pp. 353-357Cavalcanti, B.C., Barros, F.W.A., Cabral, I.O., Ferreira, J.R.O., MagalhĂŁes, H.I.F., JĂșnior, H.V.N., da Silva JĂșnior, E.N., Pessoa, C., Preclinical genotoxicology of nor-ÎČ-lapachone in human cultured lymphocytes and Chinese hamster lung fibroblasts (2011) Chem. Res. Toxicol., 24, pp. 1560-1574da Silva JĂșnior, E.N., de Souza, M.C.B.V., Pinto, A.V., Pinto, M.C.F.R., Goulart, M.O.F., Barros, F.W.A., Pessoa, C., Ferreira, V.F., Synthesis and potent antitumor activity of new arylamino derivatives of nor-ÎČ-lapachone and nor-α-lapachone (2007) Bioorg. Med. Chem., 15, pp. 7035-7041da Silva JĂșnior, E.N., Moura, M.A.B.F., Pinto, A.V., Pinto, M.C.F.R., de Souza, M.C.B.V., AraĂșjo, A.J., Pessoa, C., Goulart, M.O.F., Cytotoxic, trypanocidal activities and physicochemical parameters of nor-ÎČ-lapachone-based 1,2,3-triazoles (2009) J. Braz. Chem. Soc., 20, pp. 635-643da Silva JĂșnior, E.N., de Deus, C.F., Martins, J.B.L., Lima, A.B., Cavalcanti, B.C., Pessoa, C., Costa-Lotufo, L.V., Pinto, A.V., 3-Arylamino and 3-alkoxy-nor-ÎČ-lapachone derivatives: synthesis and cytotoxicity against cancer cell lines (2010) J. Med. Chem., 53, pp. 504-508Darzynkiewicz, Z., Bruno, S., Del Bino, G., Gorczyca, M., Hotz, M.A., Lassota, P., Traganos, F., Features of apoptotic cells measured by flow cytometry (1992) Cytometry, 13, pp. 795-808de Abreu, F.C., Ferraz, P.A.M., Goulart, M.O.F., Some applications of electrochemistry in biomedical chemistry. Emphasis on the correlation of electrochemical and bioactive properties (2002) J. Braz. Chem. Soc., 13, pp. 19-35de Abreu, F.C., Goulart, M.O.F., Brett, A.M.O., Reduction of lapachones in aqueous media at a glassy carbon electrode (2002) Electroanalysis, 14, pp. 29-34de Abreu, F.C., Ferreira, D.C.M., Goulart, M.O.F., Buriez, O., Amatore, C., Electrochemical activation of beta-lapachone in beta-cyclodextrin inclusion complexes and reactivity of its reduced form towards oxygen in aqueous solutions (2007) J. Electroanal. Chem., 608, pp. 125-132de Abreu, F.C., de Paula, F.S., Ferreira, D.C.M., Nascimento, V.B., Santos, A.M.C., Santoro, M., Salas, C.E., Goulart, M.O.F., The application of DNA-biosensors and differential scanning calorimetry to the study of the DNA-binding agent berenil (2008) Sensors, 8, pp. 1519-1538de Souza, A.A., de Moura, M.A.B.F., de Abreu, F.C., Goulart, M.O.F., da Silva JĂșnior, E.N., Pinto, A.V., Ferreira, V.F., Squella, J.A., Electrochemical study, on mercury, of a meta-nitroarylamine derivative of nor-ÎČ-lapachone, an antitumor and trypanocidal compound (2010) Quim. Nova, 33, pp. 2075-2079Diculescu, V.C., Paquim, A.M.C., Brett, A.M.O., Electrochemical DNA sensors for detection of DNA damage (2005) Sensors, 5, pp. 377-393Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., Nagata, S., A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD (1998) Nature, 391, pp. 43-50Eskes, R., Desagher, S., Antonsson, B., Martinou, J.C., Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane (2000) Mol. Cell Biol., 20, pp. 929-935Ferreira, D.C.M., Tapsoba, I., Arbault, S., Bouret, Y., Alexandre Moreira, M.S., Pinto, A.V., Goulart, M.O.F., Amatore, C., Ex vivo activities of ÎČ-lapachone and α-lapachone on macrophages: a quantitative pharmacological analysis based on amperometric monitoring of oxidative bursts by single cells (2009) ChemBioChem, 10, pp. 528-538Foye, W.O., (1995) Cancer Chemotherapeutic Agents, , American Chemical Society, Washington, D.CGoulart, M.O.F., Ossowski, T., Pipka, P., Liwo, A., Electrochemical study of oxygen interaction with lapachol and its radical anions (2003) Bioelectrochemistry, 59, pp. 85-87Goulart, M.O.F., Lima, N.M.F., Santana, A.E.G., Ferraz, P.A.L., Cavalcanti, J.C.M., Liwo, A., Falkowsky, P., Ossowsky, T., Electrochemical studies of isolapachol with emphasis on oxygen interaction with its radical anions (2004) J. Electroanal. Chem., 566, pp. 25-29Goulart, M.O.F., de Souza, A.A., de Abreu, F.C., de Paula, F.S., Sales, E.M., Almeida, W.P., Buriez, O., Amatore, C., Electrochemical study of methyl 2-[p-nitrophenyl(hydroxy)methyl]acrylate (2007) J. Electrochem. Soc., 154, pp. 121-129Gupta, D., Podar, K., Tai, Y.T., Lin, B., Hideshima, T., Akiyama, M., LeBlanc, R., Anderson, K.C., Beta-lapachone, a novel plant product, overcomes drug resistance in human multiple myeloma cells (2002) Exp. Hematol., 30, pp. 711-720Hanahan, D., Weinberg, R.A., The hallmarks of cancer (2000) Cell, 100, pp. 57-70HernĂĄndez, D.M., de Moura, M.A.B.F., Valencia, D.P., GonzĂĄlez, F.J., GonzĂĄlez, I., de Abreu, F.C., da Silva JĂșnior, E.N., Frontana, C., Inner reorganization during the radical-biradical transition in a nor-beta-lapachone derivative possessing two redox centers (2008) Org. Biomol. Chem., 6, pp. 3414-3420Hileman, E.O., Liu, J., Albitar, M., Keateng, M.J., Huang, P., Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity (2004) Cancer Chemother. Pharmacol., 53, pp. 209-219Hillard, E.A., de Abreu, F.C., Ferreira, D.C.M., Jaouen, G., Goulart, M.O.F., Amatore, C., Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds (2008) Chem. Commun., pp. 2612-2628Kerr, J.F.R., Wyllie, A.H., Currie, A.R., Apoptosis-Basic biological phenomenon with wide-ranging implications in tissue kinetics (1972) Brit. J. Cancer, 26, pp. 239-257Lebel, C.P., Ischiropoulos, H., Bondy, S.C., Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress (1992) Chem. Res. Toxicol., 5, pp. 227-231Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X., Cytochrome C and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade (1997) Cell, 91, pp. 479-489Melino, G., The Sirens' song (2001) Nature, 412, p. 23Mizutani, H., Tada-Oikawa, S., Hiraku, Y., Oikawa, S., Kojima, M., Kawanishi, S., Mechanism of apoptosis induced by a new topoisomerase inhibitor through the generation of hydrogen peroxide (2002) J. Biol. Chem., 277, pp. 30684-30689Montenegro, R.C., AraĂșjo, A.J., Molina, M.T., Marinho-Filho, J.D.B., Rocha, D.D., Lopez-Montero, E., Goulart, M.O.F., Costa-Lotufo, L.V., Cytotoxic activity of naphthoquinones with special emphasis on juglone and its 5-O-methyl derivative (2010) Chem. Biol. Interact., 184, pp. 439-448Mosmann, T., Rapid colorimetric assay for cellular growth and survival application to proliferation and cyto-toxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63Okada, H., Mak, T.W., Pathways of apoptotic and non-apoptotic death in tumour cells (2004) Nat. Rev. Cancer, 4, pp. 592-603Oliveira-Brett, A.M., Vivan, M., Fernandes, I.R., Piedade, J.A.P., Electrochemical detection of in situ adriamycin oxidative damage to DNA (2002) Talanta, 56, pp. 959-970Ossowski, T., Pipka, P., Liwo, A., Jeziorek, D., Electrochemical and UV-spectrophotometric study of oxygen and superoxide anion radical interaction with anthraquinone derivatives and their radical anions (2000) Electrochim. Acta, 45, pp. 3581-3587Ozben, T., Oxidative stress and apoptosis: impact on cancer therapy (2007) J. Pharm. Sci., 96, pp. 2181-2196Piedade, J.A.P., Fernandez, I.R., Brett, A.M.O., Electrochemical sensing of DNA-adriamycin interactions (2002) Bioelectrochemistry, 56, pp. 81-83Planchon, S.M., Wuerzberger, S., Frydman, B., Witiak, D.T., Hutson, P., Church, D.R., Wilding, G., Boothman, D.A., ÎČ-Lapachone-mediated apoptosis in human promyelocytic leukemia (HL-60) and human prostate cancer cells: a p53-independent response (1995) Cancer Res., 55, pp. 3706-3711Planchon, S.M., Wuerzberger-Davis, S.M., Pink, J.J., Robertson, K.A., Bornmann, W.G., Boothman, D.A., Bcl-2 protects against beta-lapachone-mediated caspase 3 activation and apoptosis in human myeloid leukemia (HL-60) cells (1999) Oncol Rep., 6, pp. 485-492Rauf, S., Gooding, J.J., Akhtar, K., Ghauri, M.A., Rahman, M., Anwar, M.A., Khalid, A.M., Electrochemical approach of anticancer drugs - DNA interaction (2005) J. Pharm. Biomed. Anal., 37, pp. 205-217Singh, N.P., McCoy, M.T., Tice, R.R., Schneider, E.L., A simple technique for quantitation of low-levels of DNA damage in individual cells (1988) Exp. Cell Res., 175, pp. 184-191Wang, J., Ozsoz, M., Cai, X.H., Rivas, G., Shiraishi, H., Grant, D.H., Chicharro, M., Palecek, E., Interactions of antitumor drug daunomycin with DNA in solution and at the surface (1998) Bioelectrochem. Bioenerg., 45 (1998), pp. 33-40Zafarullaha, M., Lia, W.Q., Sylvestera, J., Ahmad, M., Molecular mechanisms of N-acetylcysteine actions (2003) Cell. Mol. Life Sci., 60, pp. 6-20Ziegler, U., Groscurth, P., Morphological features of cell death (2004) News Physiol. Sci., 19, pp. 124-12