6,026 research outputs found
Progress report on solar age calibration
We report on an ongoing investigation into a seismic calibration of solar
models designed for estimating the main-sequence age and a measure of the
chemical abundances of the Sun. Only modes of low degree are employed, so that
with appropriate modification the procedure could be applied to other stars. We
have found that, as has been anticipated, a separation of the contributions to
the seismic frequencies arising from the relatively smooth, glitch-free,
background structure of the star and from glitches produced by helium
ionization and the abrupt gradient change at the base of the convection zone
renders the procedure more robust than earlier calibrations that fitted only
raw frequencies to glitch-free asymptotics. As in the past, we use asymptotic
analysis to design seismic signatures that are, to the best of our ability,
contaminated as little as possible by those uncertain properties of the star
that are not directly associated with age and chemical composition. The
calibration itself, however, employs only numerically computed
eigenfrequencies. It is based on a linear perturbation from a reference model.
Two reference models have been used, one somewhat younger, the other somewhat
older than the Sun. The two calibrations, which use BiSON data, are
more-or-less consistent, and yield a main-sequence age Gy, coupled with a formal initial heavy-element abundance .
The error analysis has not yet been completed, so the estimated precision must
be taken with a pinch of salt.Comment: 8 pages, 3 figures, in L. Deng, K.L. Chan, C. Chiosi, eds, The Art of
Modelling Stars in the 21st Century, Proc. IAU Symp. No. 252, invited
contributed pape
On the seismic age and heavy-element abundance of the Sun
We estimate the main-sequence age and heavy-element abundance of the Sun by
means of an asteroseismic calibration of theoretical solar models using only
low-degree acoustic modes from the BiSON. The method can therefore be applied
also to other solar-type stars, such as those observed by the NASA satellite
Kepler and the planned ground-based Danish-led SONG network. The age,
4.60+/-0.04 Gy, obtained with this new seismic method, is similar to, although
somewhat greater than, today's commonly adopted values, and the surface
heavy-element abundance by mass, Zs=0.0142+/-0.0005, lies between the values
quoted recently by Asplund et al. (2009) and by Caffau et al. (2009). We stress
that our best-fitting model is not a seismic model, but a theoretically evolved
model of the Sun constructed with `standard' physics and calibrated against
helioseismic data.Comment: 16 pages, 11 figures, 5 tables, accepted for publication in MNRA
Antiferromagnetic Alignment and Relaxation Rate of Gd Spins in the High Temperature Superconductor GdBa_2Cu_3O_(7-delta)
The complex surface impedance of a number of GdBaCuO
single crystals has been measured at 10, 15 and 21 GHz using a cavity
perturbation technique. At low temperatures a marked increase in the effective
penetration depth and surface resistance is observed associated with the
paramagnetic and antiferromagnetic alignment of the Gd spins. The effective
penetration depth has a sharp change in slope at the N\'eel temperature, ,
and the surface resistance peaks at a frequency dependent temperature below 3K.
The observed temperature and frequency dependence can be described by a model
which assumes a negligibly small interaction between the Gd spins and the
electrons in the superconducting state, with a frequency dependent magnetic
susceptibility and a Gd spin relaxation time being a strong function
of temperature. Above , has a component varying as , while below it increases .Comment: 4 Pages, 4 Figures. Submitted to Phys. Rev.
Quasiparticle tunnelling and field-dependent critical current in 2212-BSCCO
Intrinsic c-axis tunnelling in the superconducting state has been measured in zero and finite fields in small mesa structures fabricated on the surface of 2212-BSCCO single crystals. The temperature dependence of the zero-field critical current and quasi-particle conductance is related to microscopic d-wave models in the presence of impurity scattering. The strong field dependence of the c-axis critical current provides information on the correlation of flux pancakes across adjacent superconducting bi-layers. An instability in the IV characteristics is observed below 20K, which accounts for the apparent drop in critical current at low temperatures previously reported
Interlayer tunnelling in Bi2Sr2CaCu2O8+d single crystals
We present measurements of the intrinsic quasi-particle conductivity along the c-axis of 2212-BSCCO single-crystal mesa structures in the superconducting and normal states. Direct measurement of the mesa temperature enables corrections to be made for self-heating and permits the acquisition of reliable I-V characteristics over a wide range of temperatures and voltages. Unlike a conventional superconductor, there is no evidence for any change in the quasiparticle conductivity at Tc, consistent with precursor pairing of electrons in the normal state. At low temperatures the initial low-voltage linear conductivity exhibits a T2 dependence, approaching a limiting value at zero temperature
Intrinsic c-axis transport in 2212-BSCCO
We describe two experimental approaches to circumvent the problem of self-heating in IV measurements on small mesa samples of 2212-BSCCO. Simultaneous dc and temperature measurements have been performed, allowing corrections for heating to be made. Short pulse measurements have also been made, where the IV characteristics and the mesa temperature can be measured on a s time-scale enabling intrinsic IV characteristics to be derived, even in the presence of appreciable self-heating. Self-heating leads to an appreciable depression of the apparent energy gap and also accounts, in major part, for the s-shaped characteristics often reported at high currents. By correcting for the temperature rise, we derive the intrinsic temperature dependence of the tunnelling characteristics for crystals with a range of doping. Results are compared with recent theoretical models for c-axis transport in d-wave superconductors
- …