1,556 research outputs found

    INTEGRAL observations of the Large Magellanic Cloud region

    Full text link
    We present the preliminary results of the INTEGRAL survey of the Large Magellanic Cloud. The observations have been carried out in January 2003 (about 10^6 s) and January 2004 (about 4x10^5 s). Here we concentrate on the bright sources LMC X-1, LMC X-2, LMC X-3 located in our satellite galaxy, and on the serendipitous detections of the Galactic Low Mass X-ray Binary EXO 0748-676 and of the Seyfert 2 galaxy IRAS 04575-7537.Comment: 4 pages, 7 figures. To be published in the Proceedings of the 5th INTEGRAL Workshop: "The INTEGRAL Universe", February 16-20, 2004, Munic

    The Nature of the Compact Supernova Remnants in Starburst Galaxies

    Get PDF
    Radio observations of starburst regions in galaxies have revealed groups of compact nonthermal sources that may be radiative supernova remnants expanding in the interclump medium of molecular clouds. Because of the high pressure in starburst regions, the interclump medium may have a density ~ 10^3 H atoms cm^{-3} in a starburst nucleus like M82 and ~ 10^4 H atoms cm^{-3} in an ultraluminous galaxy like Arp 220. In M82, our model can account for the sizes, the slow evolution, the high radio luminosities, and the low X-ray luminosities of the sources. We predict expansion velocities ~ 500 km/s, which is slower than the one case measured by VLBI techniques. Although we predict the remnants to be radiative, the expected radiation is difficult to detect because it is at infrared wavelengths and the starburst is itself very luminous; one detection possibility is broad [OI] 63 micron line emission at the positions of the radio remnants. The more luminous and compact remnants in Arp 220 can be accounted for by the higher molecular cloud density. In our model, the observed remnants lose most of the supernova energy to radiation. Other explosions in a lower density medium may directly heat a hot, low density interstellar component, leading to the superwinds that are associated with starburst regions.Comment: 11 pages, 1 figure, ApJ submitte

    The Large-scale Bipolar Wind in the Galactic Center

    Get PDF
    During a 9-month campaign (1996--1997), the Midcourse Space Experiment (MSX) satellite mapped the Galactic Plane at mid-infrared wavelengths (4.3--21.3um). Here we report evidence for a spectacular limb- brightened, bipolar structure at the Galactic Center extending more than a degree (170 pc at 8.0 kpc) on either side of the plane. The 8.3um emission shows a tight correlation with the 3, 6 and 11 cm continuum structure over the same scales. Dense gas and dust are being entrained in a large-scale bipolar wind powered by a central starburst. The inferred energy injection at the source is ~10^54/kappa erg for which \kappa is the covering fraction of the dusty shell (kappa <= 0.1). There is observational evidence for a galactic wind on much larger scales, presumably from the same central source which produced the bipolar shell seen by MSX. Sofue has argued that the North Polar Spur -- a thermal x-ray/radio loop which extends from the Galactic Plane to b = +80 deg -- was powered by a nuclear explosion (1-30 x 10^55 erg) roughly 15 Myr ago. We demonstrate that an open-ended bipolar wind (~10^55 erg), when viewed in near-field projection, provides the most natural explanation for the observed loop structure. The ROSAT 1.5 keV diffuse x-ray map over the inner 45 deg provides compelling evidence for this interpretation. Since the faint bipolar emission would be very difficult to detect beyond the Galaxy, the phenomenon of large-scale galactic winds may be far more common than has been observed to date.Comment: 24 pages, 6 figures, aastex. High resolution figures are available at ftp://www.aao.gov.au/pub/local/jbh/astro-ph/GC/. Astrophysical Journal, accepte

    Generation and quality control of lipidomics data for the alzheimers disease neuroimaging initiative cohort.

    Get PDF
    Alzheimers disease (AD) is a major public health priority with a large socioeconomic burden and complex etiology. The Alzheimer Disease Metabolomics Consortium (ADMC) and the Alzheimer Disease Neuroimaging Initiative (ADNI) aim to gain new biological insights in the disease etiology. We report here an untargeted lipidomics of serum specimens of 806 subjects within the ADNI1 cohort (188 AD, 392 mild cognitive impairment and 226 cognitively normal subjects) along with 83 quality control samples. Lipids were detected and measured using an ultra-high-performance liquid chromatography quadruple/time-of-flight mass spectrometry (UHPLC-QTOF MS) instrument operated in both negative and positive electrospray ionization modes. The dataset includes a total 513 unique lipid species out of which 341 are known lipids. For over 95% of the detected lipids, a relative standard deviation of better than 20% was achieved in the quality control samples, indicating high technical reproducibility. Association modeling of this dataset and available clinical, metabolomics and drug-use data will provide novel insights into the AD etiology. These datasets are available at the ADNI repository at http://adni.loni.usc.edu/

    Tunable few-electron double quantum dots and Klein tunnelling in ultra-clean carbon nanotubes

    Full text link
    Quantum dots defined in carbon nanotubes are a platform for both basic scientific studies and research into new device applications. In particular, they have unique properties that make them attractive for studying the coherent properties of single electron spins. To perform such experiments it is necessary to confine a single electron in a quantum dot with highly tunable barriers, but disorder has until now prevented tunable nanotube-based quantum-dot devices from reaching the single-electron regime. Here, we use local gate voltages applied to an ultra-clean suspended nanotube to confine a single electron in both a single quantum dot and, for the first time, in a tunable double quantum dot. This tunability is limited by a novel type of tunnelling that is analogous to that in the Klein paradox of relativistic quantum mechanics.Comment: 21 pages including supplementary informatio

    New possibilities for research on reef fish across the continental shelf of South Africa

    Get PDF
    [From introduction] Subtidal research presents numerous challenges that restrict the ability to answer fundamental ecological questions related to reef systems. These challenges are closely associated with traditional monitoring methods and include depth restrictions (e.g. safe diving depths for underwater visual census), habitat destruction (e.g. trawling), mortality of target species (e.g. controlled angling and fish traps), and high operating costs (e.g. remotely operated vehicles and large research vessels. Whereas many of these challenges do not apply or are avoidable in the shallow subtidal environment, the difficulties grow as one attempts to sample deeper benthic habitats. This situation has resulted in a paucity of knowledge on the structure and ecology of deep water reef habitats around the coast of South Africa and in most marine areas around the world. Furthermore, the inability to effectively survey deep water benthic environments has limited the capacity of researchers to investigate connectivity between shallow and deep water habitats in a standardised and comparable fashio

    Secret Symmetries in AdS/CFT

    Get PDF
    We discuss special quantum group (secret) symmetries of the integrable system associated to the AdS/CFT correspondence. These symmetries have by now been observed in a variety of forms, including the spectral problem, the boundary scattering problem, n-point amplitudes, the pure-spinor formulation and quantum affine deformations.Comment: 20 pages, pdfLaTeX; Submitted to the Proceedings of the Nordita program `Exact Results in Gauge-String Dualities'; Based on the talk presented by A.T., Nordita, 15 February 201

    The Nature of Starburst Activity in M82

    Full text link
    We present new evolutionary synthesis models of M82 based mainly on observations consisting of near-infrared integral field spectroscopy and mid-infrared spectroscopy. The models incorporate stellar evolution, spectral synthesis, and photoionization modeling, and are optimized for 1-45 micron observations of starburst galaxies. The data allow us to model the starburst regions on scales as small as 25 pc. We investigate the initial mass function (IMF) of the stars and constrain quantitatively the spatial and temporal evolution of starburst activity in M82. We find a typical decay timescale for individual burst sites of a few million years. The data are consistent with the formation of very massive stars (> 50-100 Msun) and require a flattening of the starburst IMF below a few solar masses assuming a Salpeter slope at higher masses. Our results are well matched by a scenario in which the global starburst activity in M82 occurred in two successive episodes each lasting a few million years, peaking about 10 and 5 Myr ago. The first episode took place throughout the central regions of M82 and was particularly intense at the nucleus while the second episode occurred predominantly in a circumnuclear ring and along the stellar bar. We interpret this sequence as resulting from the gravitational interaction M82 and its neighbour M81, and subsequent bar-driven evolution. The short burst duration on all spatial scales indicates strong negative feedback effects of starburst activity, both locally and globally. Simple energetics considerations suggest the collective mechanical energy released by massive stars was able to rapidly inhibit star formation after the onset of each episode.Comment: 48 pages, incl. 16 Postscript figures; accepted for publication in the Astrophysical Journa
    • 

    corecore