116 research outputs found
Safety and efficacy of GABAA α5 antagonist S44819 in patients with ischaemic stroke: a multicentre, double-blind, randomised, placebo-controlled trial
Background: S44819, a selective GABAA α5 receptor antagonist, reduces tonic post-ischaemic inhibition of the peri-infarct cortex. S44819 improved stroke recovery in rodents and increased cortical excitability in a transcranial magnetic stimulation study in healthy volunteers. The Randomized Efficacy and Safety Trial of Oral GABAA α5 antagonist S44819 after Recent ischemic Event (RESTORE BRAIN) aimed to evaluate the safety and efficacy of S44819 for enhancing clinical recovery of patients with ischaemic stroke. Methods: RESTORE BRAIN was an international, randomised, double-blind, parallel-group, placebo-controlled, multicentre phase 2 trial that evaluated the safety and efficacy of oral S44189 in patients with recent ischaemic stroke. The study was done in specialised stroke units in 92 actively recruiting centres in 14 countries: ten were European countries (Belgium, Czech Republic, France, Germany, Hungary, Italy, Netherlands, Poland, Spain, and the UK) and four were non-European countries (Australia, Brazil, Canada, and South Korea). Patients aged 18â85 years with acute ischaemic stroke involving cerebral cortex (National Institute of Health Stroke Scale [NIHSS] score 7â20) without previous disability were eligible for inclusion. Participants were randomly assigned to receive 150 mg S44819 twice a day, 300 mg S44819 twice a day, or placebo twice a day by a balanced, non-adaptive randomisation method with a 1:1:1 ratio. Treatment randomisation and allocation were centralised via the interactive web response system using computer-generated random sequences with a block size of 3. Blinding of treatment was achieved by identical appearance and taste of all sachets. Patients, investigators and individuals involved in the analysis of the trial were masked to group assignment. The primary endpoint was the modified Rankin Scale (mRS) score 90 days from onset of treatment, evaluated by shift analysis (predefined main analysis) or by dichotomised analyses using 0â1 versus 2â6 and 0â2 versus 3â6 cutoffs (predefined secondary analysis). Secondary endpoints were the effects of S44819 on the NIHSS and Montreal Cognitive Assessment (MoCA) scores, time needed to complete parts A and B of the Trail Making Test, and the Barthel index. Efficacy analyses were done on all patients who received at least one dose of treatment and had at least one mRS score taken after day 5 (specifically, on or after day 30). Safety was compared across treatment groups for all patients who received at least one dose of treatment. The study was registered at ClinicalTrials.gov, NCT02877615. Findings: Between Dec 19, 2016, and Nov 16, 2018, 585 patients were enrolled in the study. Of these, 197 (34%) were randomly assigned to receive 150 mg S44819 twice a day, 195 (33%) to receive 300 mg S44819 twice a day, and 193 (33%) to receive placebo twice a day. 189 (96%) of 197 patients in the 150 mg S44819 group, 188 (96%) of 195 patients in the 300 mg S44819 group, and 191 (99%) patients in the placebo group received at least one dose of treatment and had at least one mRS score taken after day 5, and were included in efficacy analyses. 195 (99%) of 197 patients in the 150 mg S44819 group, 194 (99%) of 195 patients in the 300 mg S44819 group, and 193 (100%) patients in the placebo group received at least one dose of treatment, and were included in safety analyses. The primary endpoint of mRS at day 90 did not differ between each of the two S44819 groups and the placebo group (OR 0·91 [95% CI 0·64â1·31]; p=0·80 for 150 mg S44819 compared with placebo and OR 1·17 [95% CI 0·81â1·67]; p=0·80 for 300 mg S44819 compared with placebo). Likewise, dichotomised mRS scores at day 90 (mRS 0â2 vs 3â6 or mRS 0â1 vs 2â6) did not differ between groups. Secondary endpoints did not reveal any significant group differences. The median NIHSS score at day 90 did not differ between groups (4 [IQR 2â8] in 150 mg S44819 group, 4 [2â7] in 300 mg S44819 group, and 4 [2â6] in placebo group), nor did the number of patients at day 90 with an NIHSS score of up to 5 (95 [61%] of 156 in 150 mg S44819 group, 106 [66%] of 161 in 300 mg S44819 group, and 104 [66%] of 157 in placebo group) versus more than 5 (61 [39%] in 150 mg S44819 group, 55 [34%] in 300 mg S44819 group, and 53 [34%] in placebo group). Likewise, the median MoCA score (22·0 [IQR 17·0â26·0] in 150 mg S44819 group, 23·0 [19·0â26·5] in 300 mg S44819 group, and 22·0 [17·0â26·0] in placebo group), time needed to complete parts A (50 s [IQR 42â68] in 150 mg S44819 group, 49 s [36â63] in 300 mg S44819 group, and 50 s [38â68] in placebo group) and B (107 s [81â144] in 150 mg S44819 group, 121 s [76â159] in 300 mg S44819 group, and 130 s [86â175] in placebo group) of the Trail Making Test, and the Barthel index (90 [IQR 60â100] in 150 mg S44819 group, 90 [70â100] in 300 mg S44819 group, and 90 [70â100] in placebo group) were similar in all groups. Number and type of adverse events were similar between the three groups. There were no drug-related adverse events and no drug-related deaths. Interpretation: There was no evidence that S44819 improved clinical outcome in patients after ischaemic stroke, and thus S44819 cannot be recommended for stroke therapy. The concept of tonic inhibition after stroke should be re-evaluated in humans. Funding: Servier
Mathematical modelling of clostridial acetone-butanol-ethanol fermentation
Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the âevolutionâ of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists
- âŠ