4 research outputs found

    Plant-mediated indirect effects of climate change on an insect herbivore

    No full text
    Kuczyk J, Müller C, Fischer K. Plant-mediated indirect effects of climate change on an insect herbivore. Basic and Applied Ecology. 2021;53:100-113.Anthropogenic climate change is a substantial challenge to biodiversity conservation, exerting direct effects on plants and animals alike. Herbivores may be additionally affected by indirect effects, mediated through, for instance, climate change-induced alterations in host-plant quality. Thus, climate change may pronouncedly impact long-evolved plant-animal interactions, but our knowledge is still in its infancy, particularly with regard to the combined effects of temperature and water availability. We here investigate the effects of simulated climate change, considering variation in both temperature and water availability, on (1) host-plant chemistry, (2) herbivore oviposition and larval feeding preference, and (3) larval and adult performance. As study system, we used the butterfly Pieris napi (Lepidoptera: Pieridae) and its host plant Sinapis alba (Brassicacae). Host-plant chemistry was affected by simulated climate change, with higher temperatures increasing the carbon-nitrogen ratio and concentrations of glucosinolates, while drought stress led to reduced glucosinolate concentrations. Both egg-laying females and larvae preferred plants with the highest concentrations of the glucosinolate glucosinalbin, potentially acting as oviposition and feeding stimulus. Herbivore performance was positively affected by plants grown at control temperatures or under drought stress and thus reduced glucosinolate concentrations. Hence, P. napi was not able to select the most profitable host. Our study indicates that (1) climate-induced changes in plant chemistry may exert indirect effects on herbivores, (2) effects of climate change will depend on the magnitude of change in specific abiotic parameters and their interactions, whereby positive (e.g. drought) and negative (e.g. temperature) effects may even cancel out each other, and (3) changes in critical chemical cues may diminish host-plant detectability and thereby result in reduced realised fecundity. We thus highlight the important role of temperature and water availability on plant chemistry, which may change interactions between insects and plants

    Quellen- und Literaturverzeichnis

    No full text
    corecore