270 research outputs found

    Heteronuclear filters in two-dimensional [1H, 1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions

    Get PDF
    The use of heteronuclear filters enables the editing of complex 1H nuclear magnetic resonance (NMR) spectra into simplified subspectra containing a lesser number of resonance lines, which are then more easily amenable to detailed spectral analysis. This editing is based on the creation of heteronuclear two-spin or multiple-spin coherence and discrimination between protons that do or do not participate in these heteronuclear coherences. In principle, heteronuclear editing can be used in conjunction with one-dimensional or multidimensional 1H-NMR experiments for studies of a wide variety of low-molecular-weight compounds or macromolecular systems, and is implicitely applied in a wide range of heteronuclear NMR experiments with proton detection (e.g. Bax et al. 1983; Griffey & Redfield, 1987). In the present article we shall focus on the use of heteronuclear filters in two-dimensional (2D) [1H, 1H]-NMR experiments. The selection of the material covered was primarily motivated by its impact on the practice of protein structure determination in solution, and on NMR studies of intermolecular interactions with biological macromolecules. Section 2 surveys potential applications of heteronuclear filters in this area. The remainder of the article is devoted to an introduction of the theoretical principles used in heteronuclear filters, and to a detailed description of the experimental implementation of these measurements. In writing the review we tried to minimize redundancy with the recent article in Quarterly Review of Biophysics by Griffey & Redfield (1987) and to concentrate on experiments that were introduced during the period 1986-

    Edwin Ernest Salpeter

    Get PDF
    Edwin Ernest Salpeter, among the most influential, prescient, and innovative astrophysicists of the past half century, died of leukemia at his home in Ithaca, New York, on 26 November 2008

    Reform der Deutschen Bundespost

    Full text link

    Retrieving Nuclear Information from Protons Propagating through A Thick Target

    Full text link
    The multiple scattering of high-energy particles in a thick target is fromulated in an impact parameter representation. A formalism similar but not identical to that of Moliere is obtained. We show that calculations of particle beam broadening due to multiple Coulomb scattering alone can be given in closed form. The focus of this study is on whether or not the broadening of the Coulomb angular distribution prevents the retrieval of nuclear-interaction information from mesauring the angular distributions of charged partiles scattered from a thick target. For this purpose, we study multiple scatterings with both the nuclear and Coulomb interactions included and we do not make a small-angle expansion. Condition for retrieving nuclear infomration from high-energy protons propagating through a block of material are obtained.Comment: 29 pages, 13 figure

    Sequential NMR assignments of labile protons in DNA using two-dimensional nuclear-overhauser-enhancemnt spectroscopy with three jump-and-return pulse sequences

    Get PDF
    Two-dimensional nuclear Overhauser enhancement (NOESY) spectra of labile protons were recorded in H2O solutions of a protein and of a DNA duplex, using a modification of the standard NOESY experiment with all three 90° pulses replaced by jump-and-return sequences. For the protein as well as the DNA fragment the strategically important spectral regions could be recorded with good sensitivity and free of artifacts. Using this procedure, sequence-specific assignments were obtained for the imino protons, C2H of adenine, and C4NH2 of cytosine in a 23-base-pair DNA duplex which includes the 17-base-pair OR3 repressor binding site of bacteriophage λ. Based on comparison with previously published results on the isolated OR3 binding site, these data were used for a study of chain termination effects on the chemical shifts of imino proton resonances of DNA duplexes

    P.A.M. Dirac and the Discovery of Quantum Mechanics

    Full text link
    Dirac's contributions to the discovery of non-relativistic quantum mechanics and quantum electrodynamics, prior to his discovery of the relativistic wave equation, are described

    Protein Kinase C θ Affects Ca2+ Mobilization and NFAT Activation in Primary Mouse T Cells

    Get PDF
    Protein kinase C (PKC)θ is an established component of the immunological synapse and has been implicated in the control of AP-1 and NF-κB. To study the physiological function of PKCθ, we used gene targeting to generate a PKCθ null allele in mice. Consistently, interleukin 2 production and T cell proliferative responses were strongly reduced in PKCθ-deficient T cells. Surprisingly, however, we demonstrate that after CD3/CD28 engagement, deficiency of PKCθ primarily abrogates NFAT transactivation. In contrast, NF-κB activation was only partially reduced. This NFAT transactivation defect appears to be secondary to reduced inositol 1,4,5-trisphosphate generation and intracellular Ca2+ mobilization. Our finding suggests that PKCθ plays a critical and nonredundant role in T cell receptor–induced NFAT activation
    corecore