5,196 research outputs found
A monomial matrix formalism to describe quantum many-body states
We propose a framework to describe and simulate a class of many-body quantum
states. We do so by considering joint eigenspaces of sets of monomial unitary
matrices, called here "M-spaces"; a unitary matrix is monomial if precisely one
entry per row and column is nonzero. We show that M-spaces encompass various
important state families, such as all Pauli stabilizer states and codes, the
AKLT model, Kitaev's (abelian and non-abelian) anyon models, group coset
states, W states and the locally maximally entanglable states. We furthermore
show how basic properties of M-spaces can transparently be understood by
manipulating their monomial stabilizer groups. In particular we derive a
unified procedure to construct an eigenbasis of any M-space, yielding an
explicit formula for each of the eigenstates. We also discuss the computational
complexity of M-spaces and show that basic problems, such as estimating local
expectation values, are NP-hard. Finally we prove that a large subclass of
M-spaces---containing in particular most of the aforementioned examples---can
be simulated efficiently classically with a unified method.Comment: 11 pages + appendice
From qubits to black holes: entropy, entanglement and all that
Entropy plays a crucial role in characterization of information and
entanglement, but it is not a scalar quantity and for many systems it is
different for different relativistic observers. Loop quantum gravity predicts
the Bekenstein-Hawking term for black hole entropy and logarithmic correction
to it. The latter originates in the entanglement between the pieces of spin
networks that describe black hole horizon. Entanglement between gravity and
matter may restore the unitarity in the black hole evaporation process. If the
collapsing matter is assumed to be initially in a pure state, then entropy of
the Hawking radiation is exactly the created entanglement between matter and
gravity.Comment: Honorable Mention in the 2005 Gravity Research Foundation Essay
Competitio
Robust randomized benchmarking of quantum processes
We describe a simple randomized benchmarking protocol for quantum information
processors and obtain a sequence of models for the observable fidelity decay as
a function of a perturbative expansion of the errors. We are able to prove that
the protocol provides an efficient and reliable estimate of an average
error-rate for a set operations (gates) under a general noise model that allows
for both time and gate-dependent errors. We determine the conditions under
which this estimate remains valid and illustrate the protocol through numerical
examples.Comment: 4+ pages, 1 figure, and 1 tabl
A state variable for crumpled thin sheets
Despite the apparent ease with which a sheet of paper is crumpled and tossed
away, crumpling dynamics are often considered a paradigm of complexity. This
complexity arises from the infinite number of configurations a disordered
crumpled sheet can take. Here we experimentally show that key aspects of
crumpling have a very simple description; the evolution of the damage in
crumpling dynamics can largely be described by a single global quantity, the
total length of all creases. We follow the evolution of the damage network in
repetitively crumpled elastoplastic sheets, and show that the dynamics of this
quantity are deterministic, and depend only on the instantaneous state of the
crease network and not at all on the crumpling history. We also show that this
global quantity captures the crumpling dynamics of a sheet crumpled for the
first time. This leads to a remarkable reduction in complexity, allowing a
description of a highly disordered system by a single state parameter. Similar
strategies may also be useful in analyzing other systems that evolve under
geometric and mechanical constraints, from faulting of tectonic plates to the
evolution of proteins
Developing the Deutsch-Hayden approach to quantum mechanics
The formalism of Deutsch and Hayden is a useful tool for describing quantum
mechanics explicitly as local and unitary, and therefore quantum information
theory as concerning a "flow" of information between systems. In this paper we
show that these physical descriptions of flow are unique, and develop the
approach further to include the measurement interaction and mixed states. We
then give an analysis of entanglement swapping in this approach, showing that
it does not in fact contain non-local effects or some form of superluminal
signalling.Comment: 14 pages. Added section on entanglement swappin
Secure and efficient decoy-state quantum key distribution with inexact pulse intensities
We present a general theorem for the efficient verification of the lower
bound of single-photon transmittance. We show how to do decoy-state quantum key
distribution efficiently with large random errors in the intensity control. In
our protocol, the linear terms of fluctuation disappear and only the quadratic
terms take effect. We then show the unconditional security of decoy-state
method with whatever error pattern in intensities of decoy pulses and signal
pulses provided that the intensity of each decoy pulse is less than and
the intensity of each signal pulse is larger than
Quantum Communication and Computing With Atomic Ensembles Using Light-Shift Imbalance Induced Blockade
Recently, we have shown that for conditions under which the so-called
light-shift imbalance induced blockade (LSIIB) occurs, the collective
excitation of an ensemble of a multi-level atom can be treated as a closed two
level system. In this paper, we describe how such a system can be used as a
quantum bit (qubit) for quantum communication and quantum computing.
Specifically, we show how to realize a C-NOT gate using the collective qubit
and an easily accessible ring cavity, via an extension of the so-called
Pellizzari scheme. We also describe how multiple, small-scale quantum computers
realized using these qubits can be linked effectively for implementing a
quantum internet. We describe the details of the energy levels and transitions
in 87Rb atom that could be used for implementing these schemes.Comment: 16 pages, 9 figures. Accepted in Phys. Rev.
Three-intensity decoy state method for device independent quantum key distribution with basis dependent errors
We study the measurement device independent quantum key distribution (MDIQKD)
in practice with limited resource, when there are only 3 different states in
implementing the decoy-state method and when there are basis dependent coding
errors. We present general formulas for the decoy-state method for two-pulse
sources with 3 different states, which can be applied to the recently proposed
MDIQKD with imperfect single-photon source such as the coherent states or the
heralded states from the parametric down conversion. We point out that the
existing result for secure QKD with source coding errors does not always hold.
We find that very accurate source coding is not necessary. In particular, we
loosen the precision of existing result by several magnitude orders for secure
QKD.Comment: Published version with Eq.(17) corrected. We emphasize that our major
result (Eq.16) for the decoy-state part can be applied to generate a key rate
very close to the ideal case of using infinite different coherent states, as
was numerically demonstrated in Ref.[21]. Published in PRA, 2013, Ja
Entanglement Purification of Any Stabilizer State
We present a method for multipartite entanglement purification of any
stabilizer state shared by several parties. In our protocol each party measures
the stabilizer operators of a quantum error-correcting code on his or her
qubits. The parties exchange their measurement results, detect or correct
errors, and decode the desired purified state. We give sufficient conditions on
the stabilizer codes that may be used in this procedure and find that Steane's
seven-qubit code is the smallest error-correcting code sufficient to purify any
stabilizer state. An error-detecting code that encodes two qubits in six can
also be used to purify any stabilizer state. We further specify which classes
of stabilizer codes can purify which classes of stabilizer states.Comment: 11 pages, 0 figures, comments welcome, submitting to Physical Review
- …