1,393 research outputs found

    Self-Gravitating Strings In 2+1 Dimensions

    Full text link
    We present a family of classical spacetimes in 2+1 dimensions. Such a spacetime is produced by a Nambu-Goto self-gravitating string. Due to the special properties of three-dimensional gravity, the metric is completely described as a Minkowski space with two identified worldsheets. In the flat limit, the standard string is recovered. The formalism is developed for an open string with massive endpoints, but applies to other boundary conditions as well. We consider another limit, where the string tension vanishes in geometrical units but the end-masses produce finite deficit angles. In this limit, our open string reduces to the free-masses solution of Gott, which possesses closed timelike curves when the relative motion of the two masses is sufficiently rapid. We discuss the possible causal structures of our spacetimes in other regimes. It is shown that the induced worldsheet Liouville mode obeys ({\it classically}) a differential equation, similar to the Liouville equation and reducing to it in the flat limit. A quadratic action formulation of this system is presented. The possibility and significance of quantizing the self-gravitating string, is discussed.Comment: 55 page

    A prescription for probabilities in eternal inflation

    Get PDF
    Some of the parameters we call ``constants of Nature'' may in fact be variables related to the local values of some dynamical fields. During inflation, these variables are randomized by quantum fluctuations. In cases when the variable in question (call it χ\chi) takes values in a continuous range, all thermalized regions in the universe are statistically equivalent, and a gauge invariant procedure for calculating the probability distribution for χ\chi is known. This is the so-called ``spherical cutoff method''. In order to find the probability distribution for χ\chi it suffices to consider a large spherical patch in a single thermalized region. Here, we generalize this method to the case when the range of χ\chi is discontinuous and there are several different types of thermalized region. We first formulate a set of requirements that any such generalization should satisfy, and then introduce a prescription that meets all the requirements. We finally apply this prescription to calculate the relative probability for different bubble universes in the open inflation scenario.Comment: 15 pages, 5 figure

    Varying c cosmology and Planck value constraints

    Full text link
    It has been suggested that by increasing the speed of light during the early universe various cosmological problems of standard big bang cosmology can be overcome, without requiring an inflationary phase. However, we find that as the Planck length and Planck time are then made correspondingly smaller, and together with the need that the universe should not re-enter a Planck epoch, the higher cc models have very limited ability to resolve such problems. For a constantly decreasing cc the universe will quickly becomes quantum gravitationally dominated as time increases: the opposite to standard cosmology where quantum behaviour is only ascribed to early times.Comment: extended versio

    Transformation of Morphology and Luminosity Classes of the SDSS Galaxies

    Full text link
    We present a unified picture on the evolution of galaxy luminosity and morphology. Galaxy morphology is found to depend critically on the local environment set up by the nearest neighbor galaxy in addition to luminosity and the large scale density. When a galaxy is located farther than the virial radius from its closest neighbor, the probability for the galaxy to have an early morphological type is an increasing function only of luminosity and the local density due to the nearest neighbor (ρn\rho_n). The tide produced by the nearest neighbor is thought to be responsible for the morphology transformation toward the early type at these separations. When the separation is less than the virial radius, i.e. when ρn>ρvirial\rho_n > \rho_{\rm virial}, its morphology depends also on the neighbor's morphology and the large-scale background density over a few Mpc scales (ρ20\rho_{20}) in addition to luminosity and ρn\rho_n. The early type probability keeps increasing as ρn\rho_n increases if its neighbor is an early type. But the probability decreases as ρn\rho_n increases when the neighbor is a late type. The cold gas streaming from the late type neighbor can be the reason for the morphology transformation toward late type. The overall early-type fraction increases as ρ20\rho_{20} increases when ρn>ρvirial\rho_n > \rho_{\rm virial}. This can be attributed to the hot halo gas of the neighbor which is confined by the pressure of the ambient medium held by the background mass. We have also found that galaxy luminosity depends on ρn\rho_n, and that the isolated bright galaxies are more likely to be recent merger products. We propose a scenario that a series of morphology and luminosity transformation occur through distant interactions and mergers, which results in the morphology--luminosity--local density relation.Comment: 14 pages, 7 figures, for higher resolution figures download PDF file at http://astro.kias.re.kr/docs/trans.pdf ; references added and typos in section 3.2 corrected; Final version accepted for publication in Ap

    Cosmological constant influence on cosmic string spacetime

    Full text link
    We investigate the line element of spacetime around a linear cosmic string in the presence of a cosmological constant. We obtain the metric and argue that it should be discarded because of asymptotic considerations. Then a time dependent and consistent form of the metric is obtained and its properties are discussed.Comment: 3 page

    Minds and Brains, Sleep and Psychiatry

    Get PDF
    OBJECTIVE: This article offers a philosophical thesis for psychiatric disorders that rests upon some simple truths about the mind and brain. Specifically, it asks whether the dual aspect monism—that emerges from sleep research and theoretical neurobiology—can be applied to pathophysiology and psychopathology in psychiatry. METHODS: Our starting point is that the mind and brain are emergent aspects of the same (neuronal) dynamics; namely, the brain–mind. Our endpoint is that synaptic dysconnection syndromes inherit the same dual aspect; namely, aberrant inference or belief updating on the one hand, and a failure of neuromodulatory synaptic gain control on the other. We start with some basic considerations from sleep research that integrate the phenomenology of dreaming with the neurophysiology of sleep. RESULTS: We then leverage this treatment by treating the brain as an organ of inference. Our particular focus is on the role of precision (i.e., the representation of uncertainty) in belief updating and the accompanying synaptic mechanisms. CONCLUSIONS: Finally, we suggest a dual aspect approach—based upon belief updating (i.e., mind processes) and its neurophysiological implementation (i.e., brain processes)—has a wide explanatory compass for psychiatry and various movement disorders. This approach identifies the kind of pathophysiology that underwrites psychopathology—and points to certain psychotherapeutic and psychopharmacological targets, which may stand in mechanistic relation to each other

    Quantum Stability of (2+1)-Spacetimes with Non-Trivial Topology

    Get PDF
    Quantum fields are investigated in the (2+1)-open-universes with non-trivial topologies by the method of images. The universes are locally de Sitter spacetime and anti-de Sitter spacetime. In the present article we study spacetimes whose spatial topologies are a torus with a cusp and a sphere with three cusps as a step toward the more general case. A quantum energy momentum tensor is obtained by the point stripping method. Though the cusps are no singularities, the latter cusps cause the divergence of the quantum field. This suggests that only the latter cusps are quantum mechanically unstable. Of course at the singularity of the background spacetime the quantum field diverges. Also the possibility of the divergence of topological effect by a negative spatial curvature is discussed. Since the volume of the negatively curved space is larger than that of the flat space, one see so many images of a single source by the non-trivial topology. It is confirmed that this divergence does not appear in our models of topologies. The results will be applicable to the case of three dimensional multi black hole\cite{BR}.Comment: 17 pages, revtex, 3 uuencoded figures containe

    Topology from the Simulated Sloan Digital Sky Survey

    Get PDF
    We measure the topology (genus curve) of the galaxy distribution in a mock redshift catalog designed to resemble the upcoming Sloan Digital Sky Survey (SDSS). The catalog, drawn from a large N-body simulation of a Lambda-CDM cos- mological model, mimics the anticipated spectroscopic selection procedures of the SDSS in some detail. Sky maps, redshift slices, and 3-D contour maps of the mock survey reveal a rich and complex structure, including networks of voids and superclusters that resemble the patterns seen in the CfA redshift survey and the Las Campanas Redshift Survey (LCRS). The 3-D genus curve can be measured from the simulated catalog with superb precision; this curve has the general shape predicted for Gaussian, random phase initial conditions, but the error bars are small enough to demonstrate with high significance the subtle departures from this shape caused by non-linear gravitational evolution. These distortions have the form predicted by Matsubara's (1994) perturbative anal- ysis, but they are much smaller in amplitude. We also measure the 3-D genus curve of the radial peculiar velocity field measured by applying distance- indicator relations (with realistic errors) to the mock catalog. This genus curve is consistent with the Gaussian random phase prediction, though it is of relatively low precision because of the large smoothing length required to overcome noise in the measured velocity field. Finally, we measure the 2-D topology in redshift slices, similar to early slices from the SDSS and to slices already observed in the LCRS. The genus curves of these slices are consistent with the observed genus curves of the LCRS, providing further evidence in favor of the inflationary CDM model with Omega_M~0.4. The catalog is publicly available at http://www.astronomy.ohio-state.edu/~dhw/sdss.html.Comment: ASTeX 4.0 Preprint Style, 5 GIF figures (Figs 1, 2, 3a, 3b, 6; see http://cfa-www.harvard.edu/~wcolley/SDSS_Top/ for PostScript versions), 7 PostScript figures. Figure 5 and Table 1 have minor corrections since publicatio

    The Evolution of the Cosmic Microwave Background

    Full text link
    We discuss the time dependence and future of the Cosmic Microwave Background (CMB) in the context of the standard cosmological model, in which we are now entering a state of endless accelerated expansion. The mean temperature will simply decrease until it reaches the effective temperature of the de Sitter vacuum, while the dipole will oscillate as the Sun orbits the Galaxy. However, the higher CMB multipoles have a richer phenomenology. The CMB anisotropy power spectrum will for the most part simply project to smaller scales, as the comoving distance to last scattering increases, and we derive a scaling relation that describes this behaviour. However, there will also be a dramatic increase in the integrated Sachs-Wolfe contribution at low multipoles. We also discuss the effects of tensor modes and optical depth due to Thomson scattering. We introduce a correlation function relating the sky maps at two times and the closely related power spectrum of the difference map. We compute the evolution both analytically and numerically, and present simulated future sky maps.Comment: 23 pages, 11 figures; references added; one figure dropped and minor changes to match published version. For high-resolution versions of figures and animations, see http://www.astro.ubc.ca/people/scott/future.htm

    Senior Recital

    Full text link
    List of performers and performances
    corecore