1,108 research outputs found

    Cosmological constant influence on cosmic string spacetime

    Full text link
    We investigate the line element of spacetime around a linear cosmic string in the presence of a cosmological constant. We obtain the metric and argue that it should be discarded because of asymptotic considerations. Then a time dependent and consistent form of the metric is obtained and its properties are discussed.Comment: 3 page

    Varying c cosmology and Planck value constraints

    Full text link
    It has been suggested that by increasing the speed of light during the early universe various cosmological problems of standard big bang cosmology can be overcome, without requiring an inflationary phase. However, we find that as the Planck length and Planck time are then made correspondingly smaller, and together with the need that the universe should not re-enter a Planck epoch, the higher cc models have very limited ability to resolve such problems. For a constantly decreasing cc the universe will quickly becomes quantum gravitationally dominated as time increases: the opposite to standard cosmology where quantum behaviour is only ascribed to early times.Comment: extended versio

    Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: a Test for Galaxy Formation Models

    Full text link
    We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr<20.19M_r<-20.19 enables us to measure the genus curve with amplitude of G=378G=378 at 6h16h^{-1}Mpc smoothing scale, with 4.8\% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10h110 h^{-1}Mpc reveals a mild scale-dependence for the shift (Δν\Delta\nu) and void abundance (AVA_V) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter AVA_V depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a Λ\LambdaCDM universe to generate mock galaxies: the Halo-Galaxy one-to-one Correspondence model, the Halo Occupation Distribution model, and three implementations of Semi-Analytic Models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. (Abridged)Comment: 24 pages, 19 figures, 10 tables, submitted to ApJS. Version with full resolution images is available at http://astro.kias.re.kr/~cbp/doc/dr7Topo.pd

    Dark matter and non-Newtonian gravity from General Relativity coupled to a fluid of strings

    Get PDF
    An exact solution of Einstein's field equations for a point mass surrounded by a static, spherically symmetric fluid of strings is presented. The solution is singular at the origin. Near the string cloud limit there is a 1/r1/r correction to Newton's force law. It is noted that at large distances and small accelerations, this law coincides with the phenomenological force law invented by Milgrom in order to explain the flat rotation curves of galaxies without introducing dark matter. When interpreted in the context of a cosmological model with a string fluid, the new solution naturally explains why the critical acceleration of Milgrom is of the same order of magnitude as the Hubble parameter.Comment: 12 pages, REVTeX, no figure

    Topology from the Simulated Sloan Digital Sky Survey

    Get PDF
    We measure the topology (genus curve) of the galaxy distribution in a mock redshift catalog designed to resemble the upcoming Sloan Digital Sky Survey (SDSS). The catalog, drawn from a large N-body simulation of a Lambda-CDM cos- mological model, mimics the anticipated spectroscopic selection procedures of the SDSS in some detail. Sky maps, redshift slices, and 3-D contour maps of the mock survey reveal a rich and complex structure, including networks of voids and superclusters that resemble the patterns seen in the CfA redshift survey and the Las Campanas Redshift Survey (LCRS). The 3-D genus curve can be measured from the simulated catalog with superb precision; this curve has the general shape predicted for Gaussian, random phase initial conditions, but the error bars are small enough to demonstrate with high significance the subtle departures from this shape caused by non-linear gravitational evolution. These distortions have the form predicted by Matsubara's (1994) perturbative anal- ysis, but they are much smaller in amplitude. We also measure the 3-D genus curve of the radial peculiar velocity field measured by applying distance- indicator relations (with realistic errors) to the mock catalog. This genus curve is consistent with the Gaussian random phase prediction, though it is of relatively low precision because of the large smoothing length required to overcome noise in the measured velocity field. Finally, we measure the 2-D topology in redshift slices, similar to early slices from the SDSS and to slices already observed in the LCRS. The genus curves of these slices are consistent with the observed genus curves of the LCRS, providing further evidence in favor of the inflationary CDM model with Omega_M~0.4. The catalog is publicly available at http://www.astronomy.ohio-state.edu/~dhw/sdss.html.Comment: ASTeX 4.0 Preprint Style, 5 GIF figures (Figs 1, 2, 3a, 3b, 6; see http://cfa-www.harvard.edu/~wcolley/SDSS_Top/ for PostScript versions), 7 PostScript figures. Figure 5 and Table 1 have minor corrections since publicatio

    Self-Dual Chern-Simons Solitons in (2+1)-Dimensional Einstein Gravity

    Full text link
    We consider here a generalization of the Abelian Higgs model in curved space, by adding a Chern--Simons term. The static equations are self-dual provided we choose a suitable potential. The solutions give a self-dual Maxwell--Chern--Simons soliton that possesses a mass and a spin

    A prescription for probabilities in eternal inflation

    Get PDF
    Some of the parameters we call ``constants of Nature'' may in fact be variables related to the local values of some dynamical fields. During inflation, these variables are randomized by quantum fluctuations. In cases when the variable in question (call it χ\chi) takes values in a continuous range, all thermalized regions in the universe are statistically equivalent, and a gauge invariant procedure for calculating the probability distribution for χ\chi is known. This is the so-called ``spherical cutoff method''. In order to find the probability distribution for χ\chi it suffices to consider a large spherical patch in a single thermalized region. Here, we generalize this method to the case when the range of χ\chi is discontinuous and there are several different types of thermalized region. We first formulate a set of requirements that any such generalization should satisfy, and then introduce a prescription that meets all the requirements. We finally apply this prescription to calculate the relative probability for different bubble universes in the open inflation scenario.Comment: 15 pages, 5 figure

    Natural Wormholes as Gravitational Lenses

    Get PDF
    Visser has suggested traversable 3-dimensional wormholes that could plausibly form naturally during Big Bang inflation. A wormhole mouth embedded in high mass density might accrete mass, giving the other mouth a net *negative* mass of unusual gravitational properties. The lensing of such a gravitationally negative anomalous compact halo object (GNACHO) will enhance background stars with a time profile that is observable and qualitatively different from that recently observed for massive compact halo objects (MACHOs) of positive mass. We recommend that MACHO search data be analyzed for GNACHOs.Comment: 4 pages; plus 4 figures; ReV_TeX 3.0; DOE/ER/40537-001/NPL94-07-01
    corecore