146 research outputs found

    Interaction of β-lactoglobulin with chaperonin GroEL

    Get PDF
    Sakai, Kazuko, Hoshino, Masaru and Goto, Yuji "Interaction of β-lactoglobulin with chaperonin GroEL", Proceedings of the Indian National Science Academy, 68, 4A, 341-347, Indian National Science Academy, 200

    Hyperocclusion up-regulates CCL3 expression in CCL2- and CCR2-deficient mice.

    Get PDF
    Excessive mechanical stress (MS) during hyperocclusion is known to result in disappearance of the alveolar hard line, enlargement of the periodontal ligament (PDL) space, and destruction of alveolar bone, leading to occlusal traumatism. We have recently reported that MS induces predominantly C-C chemokine ligand (CCL) 2 expression in PDL tissues, leading, via C-C chemokine receptor (CCR) 2, to MS-dependent osteoclastogenesis in alveolar bone. Thus, we hypothesize that ablation of the CCL2/CCR2 signaling pathway should suppress MS-induced osteoclastogenesis-associated chemokines and alleviate occlusal traumatism. We examined the effect of MS on chemokine expression and osteoclastogenesis using in vivo and in vitro hyperocclusion models with CCL2-deficient (CCL2((-/-))) and CCR2-deficient (CCR2((-/-))) mice. Compared with that in wild-type mice, expression of CCL3 in PDL cells and TRAP-positive cells in alveolar bone from CCL2((-/-)) and CCR2((-/-)) mice was up-regulated, even in the absence of MS. Furthermore, the expression of CCL3 and TRAP-positive cells was significantly increased after both 4 and 7 days of hyperocclusal MS loading in CCL2((-/-)) and CCR2((-/-)) mice. Hyperocclusion induced compensatory CCL3 expression and promoted osteoclastogenesis to counterbalance deficient CCL2/CCR2 signaling, suggesting that co-expression of CCL3 with CCL2 may precipitate synergistic, MS-dependent alveolar bone destruction during occlusal traumatism.Abbreviations: MS, mechanical stress; PDL, periodontal ligament; CCL2, CC chemokine ligand 2 (MCP-1; monocyte chemoattractant protein-1); CCR2, CC chemokine receptor 2; CCL3, CC chemokine ligand 3 (MIP-1α); CCL5, CC chemokine ligand 5 (RANTES).福岡歯科大学2013年

    Erythropoietin Receptor Signaling Mitigates Renal Dysfunction-Associated Heart Failure by Mechanisms Unrelated to Relief of Anemia

    Get PDF
    ObjectivesWe examined the effect of asialoerythropoietin (asialoEPO), a nonerythrogenic derivative of erythropoietin (EPO), on renal dysfunction-associated heart failure.BackgroundAlthough EPO is known to exert beneficial effects on cardiac function, the clinical benefits in patients with chronic kidney disease are controversial. It remains to be addressed whether previously reported outcomes were the result of relief of the anemia, adverse effects of EPO, or direct cardiovascular effects.MethodsMice underwent 5/6 nephrectomy to cause renal dysfunction. Eight weeks later, when renal dysfunction was established, anemia and cardiac dysfunction and remodeling were apparent. Mice were then assigned to receive saline (control), recombinant human erythropoietin (rhEPO) at 5,000 IU (714 pmol)/kg, or asialoEPO at 714 pmol/kg, twice/week for 4 weeks.ResultsAlthough only rhEPO relieved the nephrectomy-induced anemia, both rhEPO and asialoEPO significantly and similarly mitigated left ventricular dilation and dysfunction. The hearts of rhEPO- or asialoEPO-treated mice showed less hypertrophy, reflecting decreases in cardiomyocyte hypertrophy and degenerative subcellular changes, as well as significant attenuation of fibrosis, leukocyte infiltration, and oxidative deoxyribonucleic acid damage. These phenotypes were accompanied by restored expression of GATA-4, sarcomeric proteins, and vascular endothelial growth factor and decreased inflammatory cytokines and lipid peroxidation. Finally, myocardial activation was observed of extracellular signal-regulated protein kinase and signal transducer and activator of transcription pathways in the treated mice.ConclusionsEPO receptor signaling exerts direct cardioprotection in an animal model of renal dysfunction-associated heart failure, probably by mitigating degenerative, pro-fibrosis, inflammatory, and oxidative processes but not through relief of anemia
    corecore