15 research outputs found

    A Study on the Relationship between Siltation and Flow Parameters of a Typical Alluvial River-Manas, A Tributary of Brahmaputra

    Full text link
    Silt is defined as the granular material of size somewhere between sand and clay. Silt may occur as a soil or as sediment mixed with water as known as a suspended load in a body of water such as a river. It may also exist as soil deposited at the bottom of a water body. The natural process of the decay of organisms into the water can lead to the production of silt at the bottom of a river. Silt can be generated in the streams by mining, agriculture and other industries and sewage. Through these study an attempt has been made to record periodical observations of the river Manas, a tributary flowing into the Brahmaputra river, to record its different hydrodynamic properties viz. amount of silt carried, velocity during the period, discharge, cross-sectional properties etc. and to study its various aspects and then recommend some enhancing engineering solutions

    A Study on the Relationship between Siltation and Flow Parameter of a Typical Alluvial River - Studied Open Channel Flow Bhogdoi River

    Full text link
    The tendency of a river to change its course is the common feature of a river. This causes various problem to agricultural land, habitation, hydraulic structure etc located on the river banks. Soil erosion is one of the major threats to the society and it affects the economy of the state. It occurs when grains or assembly of grains are removed from the bank face by the flow. Due to strong forces of lift and drag exerted on the bank by flow, it detaches and removes soil from the intact soil. In our state as the mighty Brahmaputra river passes through the heart of Assam, therefore the affect of soil erosion is very horrible. From the earlier time various method are taken to eliminate soil erosion. The aim of this project is to record periodical observation of a tributary flowing into the river Brahmaputra to check its different properties i.e. the amount of silt carried, velocity during the period, discharge of the section, cross sectional properties and to study its various aspects to enhance some solution

    Efficacy and Safety of an mRNA-Based RSV PreF Vaccine in Older Adults.

    No full text
    Respiratory syncytial virus (RSV) can cause substantial morbidity and mortality among older adults. An mRNA-based RSV vaccine, mRNA-1345, encoding the stabilized RSV prefusion F glycoprotein, is under clinical investigation. In this ongoing, randomized, double-blind, placebo-controlled, phase 2-3 trial, we randomly assigned, in a 1:1 ratio, adults 60 years of age or older to receive one dose of mRNA-1345 (50 μg) or placebo. The two primary efficacy end points were the prevention of RSV-associated lower respiratory tract disease with at least two signs or symptoms and with at least three signs or symptoms. A key secondary efficacy end point was the prevention of RSV-associated acute respiratory disease. Safety was also assessed. Overall, 35,541 participants were assigned to receive the mRNA-1345 vaccine (17,793 participants) or placebo (17,748). The median follow-up was 112 days (range, 1 to 379). The primary analyses were conducted when at least 50% of the anticipated cases of RSV-associated lower respiratory tract disease had occurred. Vaccine efficacy was 83.7% (95.88% confidence interval [CI], 66.0 to 92.2) against RSV-associated lower respiratory tract disease with at least two signs or symptoms and 82.4% (96.36% CI, 34.8 to 95.3) against the disease with at least three signs or symptoms. Vaccine efficacy was 68.4% (95% CI, 50.9 to 79.7) against RSV-associated acute respiratory disease. Protection was observed against both RSV subtypes (A and B) and was generally consistent across subgroups defined according to age and coexisting conditions. Participants in the mRNA-1345 group had a higher incidence than those in the placebo group of solicited local adverse reactions (58.7% vs. 16.2%) and of systemic adverse reactions (47.7% vs. 32.9%); most reactions were mild to moderate in severity and were transient. Serious adverse events occurred in 2.8% of the participants in each trial group. A single dose of the mRNA-1345 vaccine resulted in no evident safety concerns and led to a lower incidence of RSV-associated lower respiratory tract disease and of RSV-associated acute respiratory disease than placebo among adults 60 years of age or older. (Funded by Moderna; ConquerRSV ClinicalTrials.gov number, NCT05127434.)

    Estimation of tuberculosis incidence at subnational level using three methods to monitor progress towards ending TB in India, 2015–2020

    No full text
    Objectives We verified subnational (state/union territory (UT)/district) claims of achievements in reducing tuberculosis (TB) incidence in 2020 compared with 2015, in India.Design A community-based survey, analysis of programme data and anti-TB drug sales and utilisation data.Setting National TB Elimination Program and private TB treatment settings in 73 districts that had filed a claim to the Central TB Division of India for progress towards TB-free status.Participants Each district was divided into survey units (SU) and one village/ward was randomly selected from each SU. All household members in the selected village were interviewed. Sputum from participants with a history of anti-TB therapy (ATT), those currently experiencing chest symptoms or on ATT were tested using Xpert/Rif/TrueNat. The survey continued until 30 Mycobacterium tuberculosis cases were identified in a district.Outcome measures We calculated a direct estimate of TB incidence based on incident cases identified in the survey. We calculated an under-reporting factor by matching these cases within the TB notification system. The TB notification adjusted for this factor was the estimate by the indirect method. We also calculated TB incidence from drug sale data in the private sector and drug utilisation data in the public sector. We compared the three estimates of TB incidence in 2020 with TB incidence in 2015.Results The estimated direct incidence ranged from 19 (Purba Medinipur, West Bengal) to 1457 (Jaintia Hills, Meghalaya) per 100 000 population. Indirect estimates of incidence ranged between 19 (Diu, Dadra and Nagar Haveli) and 788 (Dumka, Jharkhand) per 100 000 population. The incidence using drug sale data ranged from 19 per 100 000 population in Diu, Dadra and Nagar Haveli to 651 per 100 000 population in Centenary, Maharashtra.Conclusion TB incidence in 1 state, 2 UTs and 35 districts had declined by at least 20% since 2015. Two districts in India were declared TB free in 2020

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    No full text
    International audienceA primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)  MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the νe component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(Eν) for charged-current νe absorption on argon. In the context of a simulated extraction of supernova νe spectral parameters from a toy analysis, we investigate the impact of σ(Eν) modeling uncertainties on DUNE’s supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(Eν) must be substantially reduced before the νe flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires σ(Eν) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(Eν). A direct measurement of low-energy νe-argon scattering would be invaluable for improving the theoretical precision to the needed level

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
    corecore