81 research outputs found

    La conception de la philosophie dans les dialogues de jeunesse d'Augustin

    Get PDF
    Notre mémoire a pour but de mettre en lumière la conception de la philosophie développée dans les écrits de jeunesse d’Augustin (plus précisément, les écrits d’Augustin qui remontent à son séjour à Cassiciacum, entre 386 et 387). Il limitera son analyse aux œuvres d’Augustin que nous retrouvons dans les deux volumes du tome IV de la Bibliothèque augustinienne : le De beata uita et le De ordine. Ce travail reprendra la question posée par Jean-Luc Marion dans son œuvre Au lieu de soi : L’approche de Saint Augustin en examinant si Augustin fait ou non partie de la tradition métaphysique. Cette question sera en effet au centre de notre mémoire en orientant le développement des chapitres de notre étude sur la conception de la philosophie chez le jeune Augustin. L’objectif de notre mémoire sera donc de mieux saisir la conception augustinienne de la philosophie que nous retrouvons dans le De beata uita et le De ordine afin de vérifier si cette conception est cohérente avec la thèse marionienne selon laquelle Augustin ne fait pas partie de la tradition métaphysique.Our Master's thesis wishes to shed light on the conception of philosophy developed in the early writings of Augustine (more precisely, the ones that Augustine has written during his time spent at Cassiciacum, between 386 and 387). It will limit its investigation to the works of Augustine that we can find in the two volumes of the fourth volume of the Bibliothèque augustinienne: the De beata uita and the De ordine. This work will pursue the question asked by Jean-Luc Marion in his study Au lieu de soi : L’approche de Saint Augustin and will try to find out if Augustine is or is not part of the metaphysical tradition. This question will indeed be at the core of our Master's thesis by orienting the development of the chapters of our study of the conception of philosophy of the young Augustine. The purpose of our Master's thesis is thus to better understand the Augustinian conception of philosophy that we find in the De beata uita and the De ordine in order to see if this conception is coherent with the Marionian thesis which states that Augustine is not a part of the metaphysical tradition

    Comfort and energy consumption of hydronic heating radiant ceilings and walls based on CFD analysis

    Get PDF
    This article presents the methodology and results of a hybrid numerical optimization study of a heating ceiling and wall hydronic radiant panel system in a typical residential building located in Quebec City, Canada. The comfort and energy consumption of the system are the two figures of merit that are considered in the multiobjective optimization analysis. The main design variables are the position and dimension of the panels, and the fluid inlet temperature. The hybrid numerical method features a 2D CFD model of a typical empty room, coupled with a semi-analytic radiant panel model specially developed for coupling with CFD. This strategy allows considering the real room geometry, while providing at the same time accurate temperature profiles of the radiant panels and detailed temperature and comfort data field in the room. The results show that there is no unique optimal solution but rather a family of optimal designs (Pareto fronts) for which the solutions are trade-offs between the two objectives. When adjusting correctly the fluid inlet temperature, it is also possible to achieve nearly Pareto optimal solutions, even when reducing the total panel surface by 66%. This means that the temperature control of the fluid is the most important parameter for maximizing comfort and minimizing energy consumption of hydronic heating radiant panels

    Campylobacter dans différents environnements aquatiques : quantification et génotypage afin de mieux évaluer les risques potentiels d’infection pour l’être humain

    Get PDF
    Campylobacter est l’agent pathogène zoonotique responsable de la majorité des gastro-entérites d’origine bactérienne chez l’homme. Les produits de volaille représentent la principale source d’infection; toutefois, l’exposition peut également découler de contacts directs avec les animaux ou avec l’eau. Une forte variation saisonnière est présente dans les cas rapportés, qui n’est toujours pas élucidée : les eaux environnementales, sources d’infection connues, sont soupçonnées. Cette étude transversale a été réalisée dans la région Sud-Est du Québec (Canada) où Campylobacter fut quantifié et génotypé à partir de différentes sources d’eau (eaux de captage, récréatives et usées) et de cas cliniques afin d’évaluer les risques potentiels posé par l’eau environnementale. Différents essais PCR en temps réel furent appliqués à l’eau environnementale et comparés: 2 ont été sélectionnés pour leur spécificité et sensibilité de quantification. Les courbes standards ont été calibrées en utilisant la PCR digitale pour déterminer précisément les concentrations. Les isolats environnementaux et cliniques furent comparés génétiquement en utilisant le CGF (« comparative genomic fingerprinting »). Les eaux usées étaient plus contaminées que les eaux de captage et récréatives (3.9Log, 1.7Log et 1.0Log cellules/L en moyenne, respectivement). Six pour cent des isolats d’eaux environnementales étaient génétiquement similaires (100 % homologie) aux isolats cliniques. Les cas cliniques de campylobactériose d’été montraient des isolats avec davantage de similarités génétiques avec les isolats retrouvés dans l’eau environnementale comparativement aux autres saisons (p<0.01). Les faibles concentrations et similarités génétiques entre les isolats d’eau et cliniques suggèrent un risque de transmission possible, mais faible.Campylobacter is a zoonotic pathogen that is responsible for the majority of cases of bacterial gastroenteritis. Among the numerous Campylobacter transmission routes including direct contact, food and water, poultry consumption has been recognized as the major route. A strong seasonal variation in campylobacteriosis cases exists for reasons that are not well understood; environmental water is suspected to be involved. This cross-sectional study was conducted in the Southeastern region of Quebec (Canada), wherein Campylobacter from different waters (drinking water source, recreational and sewage) and clinical sources was quantified and genotyped in order to evaluate the potential risks posed by environmental water. Several real-time PCR assays were compared for specific application to environmental water: two were selected for their specificity and sensitivity of quantification. Standard curves were calibrated using digital PCR to accurately determine concentrations. Campylobacter isolates from clinical and water sources were genetically compared using CGF (comparative genomic fingerprinting). Sewage waters showed the highest Campylobacter concentrations, while drinking water source and recreational waters showed the lowest (average of 3.9Log, 1.7Log and 1.0Log cells/L, respectively). CGF revealed that 6% of water isolates were genetically similar (100% homology) to clinical isolates. Summer cases of campylobacteriosis revealed isolates showing more genetic similarities with environmental water isolates compared to other seasons (p<0.01). The low Campylobacter concentrations and genetic similarities between water and clinical isolates from the same region, suggests that these environmental waters pose a real, but low risk of transmission

    Waking EEG functional connectivity in middle-aged and older adults with obstructive sleep apnea

    Full text link
    Objectives: The present study aimed at investigating changes in waking electroencephalography (EEG), most specifically regarding spectral power and functional connectivity, in middle-aged and older adults with OSA. We also explored whether changes in spectral power or functional connectivity are associated with polysomnographic characteristics and/or neuropsychological performance. Methods: 19 OSA subjects (apnea-hypopnea index ≥ 20, age: 63.6 ± 6.4) and 22 controls (apneahypopnea index ≤ 10, age: 63.6 ± 6.7) underwent a full night of in-laboratory polysomnography followed by a waking EEG and a neuropsychological assessment. Waking EEG spectral power and imaginary coherence were compared between groups for all EEG frequency bands and scalp regions. Correlation analyses were performed between selected waking EEG variables, polysomnographic parameters and neuropsychological performance. Results: No group difference was observed for EEG spectral power for any frequency band. Regarding the imaginary coherence, when compared to controls, OSA subjects showed decreased EEG connectivity between frontal and temporal regions in theta and alpha bands as well as increased connectivity between frontal and parietal regions in delta and beta 1 bands. In the OSA group, these changes in connectivity correlated with lower sleep efficiency, lower total sleep time and higher apnea-hypopnea index. No relationship was found with neuropsychological performance. Conclusions: Contrary to spectral power, imaginary coherence was sensitive enough to detect changes in brain function in middle-aged and older subjects with OSA when compared to controls. Whether these changes in cerebral connectivity predict cognitive decline needs to be investigated longitudinally

    EEG functional connectivity prior to sleepwalking : evidence of interplay between sleep and wakefulness

    Full text link
    Study Objectives: Although sleepwalking (somnambulism) affects up to 4% of adults, its pathophysiology remains poorly understood. Sleepwalking can be preceded by fluctuations in slow-wave sleep EEG signals, but the significance of these pre-episode changes remains unknown and methods based on EEG functional connectivity have yet to be used to better comprehend the disorder. Methods: We investigated the sleep EEG of 27 adult sleepwalkers (mean age: 29 ± 7.6 years) who experienced a somnambulistic episode during slow-wave sleep. The 20-second segment of sleep EEG immediately preceding each patient’s episode was compared with the 20-second segment occurring 2 minutes prior to episode onset. Results: Results from spectral analyses revealed increased delta and theta spectral power in the 20 seconds preceding the episodes’ onset as compared to the 20 seconds occurring 2 minutes before the episodes. The imaginary part of the coherence immediately prior to episode onset revealed (1) decreased delta EEG functional connectivity in parietal and occipital regions, (2) increased alpha connectivity over a fronto-parietal network, and (3) increased beta connectivity involving symmetric inter-hemispheric networks implicating frontotemporal, parietal and occipital areas. Conclusions: Taken together, these modifications in EEG functional connectivity suggest that somnambulistic episodes are preceded by brain processes characterized by the co-existence of arousal and deep slee

    Brain white matter damage and its association with neuronal synchrony during sleep

    Full text link
    The restorative function of sleep partly relies on its ability to deeply synchronize cerebral networks to create large slow oscillations observable with EEG. However, whether a brain can properly synchronize and produce a restorative sleep when it undergoes massive and widespread white matter damage is unknown. Here, we answer this question by testing 23 patients with various levels of white matter damage secondary to moderate to severe traumatic brain injuries (ages 18–56; 17 males, six females, 11–39 months post-injury) and compared them to 27 healthy subjects of similar age and sex. We used MRI and diffusion tensor imaging metrics (e.g. fractional anisotropy as well as mean, axial and radial diffusivities) to characterize voxel-wise white matter damage. We measured the following slow wave characteristics for all slow waves detected in N2 and N3 sleep stages: peak-to-peak amplitude, negative-to-positive slope, negative and positive phase durations, oscillation frequency, and slow wave density. Correlation analyses were performed in traumatic brain injury and control participants separately, with age as a covariate. Contrary to our hypotheses, we found that greater white matter damage mainly over the frontal and temporal brain regions was strongly correlated with a pattern of higher neuronal synchrony characterized by slow waves of larger amplitudes and steeper negative-to-positive slopes during non-rapid eye movement sleep. The same pattern of associations with white matter damage was also observed with markers of high homeostatic sleep pressure. More specifically, higher white matter damage was associated with higher slow-wave activity power, as well as with more severe complaints of cognitive fatigue. These associations between white matter damage and sleep were found only in our traumatic brain injured participants, with no such correlation in controls. Our results suggest that, contrary to previous observations in healthy controls, white matter damage does not prevent the expected high cerebral synchrony during sleep. Moreover, our observations challenge the current line of hypotheses that white matter microstructure deterioration reduces cerebral synchrony during sleep. Our results showed that the relationship between white matter and the brain’s ability to synchronize during sleep is neither linear nor simple

    Myogenesis modelled by human pluripotent stem cells uncovers Duchenne muscular dystrophy phenotypes prior to skeletal muscle commitment

    Get PDF
    Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5,000 male births. Symptoms appear in early childhood, with a diagnosis made around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise - even asymptomatically - is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. In this study, we have used human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis, and compared their differentiation dynamics to healthy control cells by a comprehensive multi-omics analysis. Transcriptome and miRnome comparisons combined with protein analyses at 7 time points demonstrate that hiPSC differentiation 1) mimics described DMD phenotypes at the differentiation endpoint; and 2) homogeneously and robustly recapitulates key developmental steps - mesoderm, somite, skeletal muscle - which offers the possibility to explore dystrophin functions and find earlier disease biomarkers. Starting at the somite stage, mitochondrial gene dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of skeletal muscle cells that starts early during myogenesis. In sum, our data strongly argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin functions during muscle development

    Sleep spindles are resilient to extensive white matter deterioration

    Full text link
    Sleep spindles are an essential part of non-rapid eye movement sleep, notably involved in sleep consolidation, cognition, learning and memory. These oscillatory waves depend on an interaction loop between the thalamus and the cortex, which relies on a structural backbone of thalamo-cortical white matter tracts. It is still largely unknown if the brain can properly produce sleep spindles when it underwent extensive white matter deterioration in these tracts, and we hypothesized that it would affect sleep spindle generation and morphology. We tested this hypothesis with chronic moderate to severe traumatic brain injury (n ¼ 23; 30.5 6 11.1 years old; 17 m/6f), a unique human model of extensive white matter deterioration, and a healthy control group (n ¼ 27; 30.3 6 13.4 years old; 21m/6f). Sleep spindles were analysed on a full night of polysomnography over the frontal, central and parietal brain regions, and we measured their density, morphology and sigma-band power. White matter deterioration was quantified using diffusion-weighted MRI, with which we performed both whole-brain voxel-wise analysis (Tract-Based Spatial Statistics) and probabilistic tractography (with High Angular Resolution Diffusion Imaging) to target the thalamo-cortical tracts. Group differences were assessed for all variables and correlations were performed separately in each group, corrected for age and multiple comparisons. Surprisingly, although extensive white matter damage across the brain including all thalamo-cortical tracts was evident in the brain-injured group, sleep spindles remained completely undisrupted when compared to a healthy control group. In addition, almost all sleep spindle characteristics were not associated with the degree of white matter deterioration in the braininjured group, except that more white matter deterioration correlated with lower spindle frequency over the frontal regions. This study highlights the resilience of sleep spindles to the deterioration of all white matter tracts critical to their existence, as they conserve normal density during non-rapid eye movement sleep with mostly unaltered morphology. We show that even with such a severe traumatic event, the brain has the ability to adapt or to withstand alterations in order to conserve normal sleep spindles
    • …
    corecore