509 research outputs found

    Electron spin interferometry using a semiconductor ring structure

    Get PDF
    A ring structure fabricated from GaAs is used to achieve interference of the net spin polarization of conduction band electrons. Optically polarized spins are split into two packets by passing through two arms of the ring in the diffusive transport regime. Optical pumping with circularly polarized light on one arm establishes dynamic nuclear polarization which acts as a local effective magnetic field on electron spins due to the hyperfine interaction. This local field causes one spin packet to precess faster than the other, thereby controlling the spin interference when the two packets are combined.Comment: 4 pages, 2 figure

    Antiferromagnetic s-d exchange coupling in GaMnAs

    Full text link
    Measurements of coherent electron spin dynamics in Ga(1-x)Mn(x)As/Al(0.4)Ga(0.6)As quantum wells with 0.0006% < x < 0.03% show an antiferromagnetic (negative) exchange bewteen s-like conduction band electrons and electrons localized in the d-shell of the Mn2+ impurities. The magnitude of the s-d exchange parameter, N0 alpha, varies as a function of well width indicative of a large and negative contribution due to kinetic exchange. In the limit of no quantum confinement, N0 alpha extrapolates to -0.09 +/- 0.03 eV indicating that antiferromagnetic s-d exchange is a bulk property of GaMnAs. Measurements of the polarization-resolved photoluminescence show strong discrepancy from a simple model of the exchange enhanced Zeeman splitting, indicative of additional complexity in the exchange split valence band.Comment: 5 pages, 4 figures and one action figur

    Fast Single-Charge Sensing with an rf Quantum Point Contact

    Full text link
    We report high-bandwidth charge sensing measurements using a GaAs quantum point contact embedded in a radio frequency impedance matching circuit (rf-QPC). With the rf-QPC biased near pinch-off where it is most sensitive to charge, we demonstrate a conductance sensitivity of 5x10^(-6) e^(2)/h Hz^(-1/2) with a bandwidth of 8 MHz. Single-shot readout of a proximal few-electron double quantum dot is investigated in a mode where the rf-QPC back-action is rapidly switched.Comment: related papers available at http://marcuslab.harvard.ed

    Local oxidation of Ga[Al]As heterostructures with modulated tip-sample voltages

    Full text link
    Nanolithography based on local oxidation with a scanning force microscope has been performed on an undoped GaAs wafer and a Ga[Al]As heterostructure with an undoped GaAs cap layer and a shallow two-dimensional electron gas. The oxide growth and the resulting electronic properties of the patterned structures are compared for constant and modulated voltage applied to the conductive tip of the scanning force microscope. All the lithography has been performed in non-contact mode. Modulating the applied voltage enhances the aspect ratio of the oxide lines, which significantly strengthens the insulating properties of the lines on GaAs. In addition, the oxidation process is found to be more reliable and reproducible. Using this technique, a quantum point contact and a quantum wire have been defined and the electronic stability, the confinement potential and the electrical tunability are demonstrated to be similar to the oxidation with constant voltage.Comment: 7 pages, 7 figures, accepted by J. Appl. Phy

    Kinetics of Exciton Emission Patterns and Carrier Transport

    Full text link
    We report on the measurements of the kinetics of expanding and collapsing rings in the exciton emission pattern. The rings are found to preserve their integrity during expansion and collapse, indicating that the observed kinetics is controlled by charge carrier transport rather than by a much faster process of exciton production and decay. The relation between ring kinetics and carrier transport, revealed by our experiment and confirmed by comparison with a theoretical model, is used to determine electron and hole transport characteristics in a contactless fashion.Comment: 6 pages, 4 figure

    Multiple layer local oxidation for fabricating semiconductor nanostructures

    Full text link
    Coupled semiconductor nanostructures with a high degree of tunability are fabricated using local oxidation with a scanning force microscope. Direct oxidation of the GaAs surface of a Ga[Al]As heterostructure containing a shallow two-dimensional electron gas is combined with the local oxidation of a thin titanium film evaporated on top. A four-terminal quantum dot and a double quantum dot system with integrated charge readout are realized. The structures are tunable via in-plane gates formed by isolated regions in the electron gas and by mutually isolated regions of the Ti film acting as top gates. Coulomb blockade experiments demonstrate the high quality of this fabrication process.Comment: 3 pages, 3 figure
    • …
    corecore