Nanolithography based on local oxidation with a scanning force microscope has
been performed on an undoped GaAs wafer and a Ga[Al]As heterostructure with an
undoped GaAs cap layer and a shallow two-dimensional electron gas. The oxide
growth and the resulting electronic properties of the patterned structures are
compared for constant and modulated voltage applied to the conductive tip of
the scanning force microscope. All the lithography has been performed in
non-contact mode. Modulating the applied voltage enhances the aspect ratio of
the oxide lines, which significantly strengthens the insulating properties of
the lines on GaAs. In addition, the oxidation process is found to be more
reliable and reproducible. Using this technique, a quantum point contact and a
quantum wire have been defined and the electronic stability, the confinement
potential and the electrical tunability are demonstrated to be similar to the
oxidation with constant voltage.Comment: 7 pages, 7 figures, accepted by J. Appl. Phy