216 research outputs found
PD-L1 testing for lung cancer in the UK: recognizing the challenges for implementation.
A new approach to the management of non-small-cell lung cancer (NSCLC) has recently emerged that works by manipulating the immune checkpoint controlled by programmed death receptor 1 (PD-1) and its ligand programmed death ligand 1 (PD-L1). Several drugs targeting PD-1 (pembrolizumab and nivolumab) or PD-L1 (atezolizumab, durvalumab, and avelumab) have been approved or are in the late stages of development. Inevitably, the introduction of these drugs will put pressure on healthcare systems, and there is a need to stratify patients to identify those who are most likely to benefit from such treatment. There is evidence that responsiveness to PD-1 inhibitors may be predicted by expression of PD-L1 on neoplastic cells. Hence, there is considerable interest in using PD-L1 immunohistochemical staining to guide the use of PD-1-targeted treatments in patients with NSCLC. This article reviews the current knowledge about PD-L1 testing, and identifies current research requirements. Key factors to consider include the source and timing of sample collection, pre-analytical steps (sample tracking, fixation, tissue processing, sectioning, and tissue prioritization), analytical decisions (choice of biomarker assay/kit and automated staining platform, with verification of standardized assays or validation of laboratory-devised techniques, internal and external quality assurance, and audit), and reporting and interpretation of the results. This review addresses the need for integration of PD-L1 immunohistochemistry with other tests as part of locally agreed pathways and protocols. There remain areas of uncertainty, and guidance should be updated regularly as new information becomes available
p53 gene aberrations in non-small-cell lung carcinomas from a smoking population.
We examined 46 non-small-cell lung carcinomas (NSCLCs) for the presence of p53 mutations in exons 4-9, positive p53 immunostaining and loss of heterozygosity (LOH) in the TP53 locus. p53 mutations were detected in 13 tumour samples (28.3%), whereas overexpression of the p53 protein was found in 30 of 45 (67%) samples. Allelic loss was found in 9 of 38 (23.6%) informative cases. The statistical analysis revealed no significant correlation between p53 mutations and clinicopathological data, although mutations appear to occur more frequently in squamous cell carcinomas (7 of 18) than in adenocarcinomas (2 of 15). All but three individuals in this study group smoked. In contrast to previous reports, we found a higher prevalence of GC-->AT transitions than of GC-->TA transversions, as expected in a smoking population. A trend was found between p53-positive immunostaining and a history of heavy smoking (76-126 pack-years) and was inversely correlated with allelic deletion (LOH) at the TP53 locus. Eight of the 12 NSCLCs containing p53 mutations also had concomitant p53 overexpression, and it is of specific note that three of the four tumours containing p53 'mutations' with no overexpression of the p53 protein had either insertions or deletions in the p53 gene. No correlation was found between p53 mutations and fractional allele loss or ras mutations. p53 mutations in this Merseyside population in the UK do not appear to be as common as in other reports for NSCLC and exhibit predominance of GC-->AT transitions preferentially at non-CpG sites, suggesting that other carcinogens in addition to those in tobacco smoke may be involved in NSCLC in the Merseyside area of the UK
Elevated P53 expression correlates with a history of heavy smoking in squamous cell carcinoma of the head and neck.
Expression of the tumour suppressor gene p53 was examined in squamous cell carcinoma of the head and neck using two p53 antibodies, PAb 421 and PAb 1801. Elevated p53 expression was found in 67% of the 73 patients investigated. P53 expression was not found to correlate with whether the patient had been previously treated or not, nor any of the clinico-pathological parameters. However a correlation was found between the patients smoking history and positive p53 staining. Six out of seven non-smokers did not express p53 whereas 29 of 37 heavy smokers were found to have elevated p53 expression (P less than 0.005). Also, of a group of ten patients who had given up smoking more than 5 years ago, nine had elevated expression. Epidemiological studies have shown a correlation between heavy smoking and head and neck cancer. The present study indicate a genetic link for this correlation
Fractional allele loss data indicate distinct genetic populations in the development of non-small-cell lung cancer.
Allelic imbalance or loss of heterozygosity (LOH) has been widely used to assess genetic instability in tumours, and high LOH on chromosome arms 3p, 9p and 17p has been considered to be a common event in non-small-cell lung cancer (NSCLC). We have investigated allelic imbalance in 45 NSCLCs using 92 microsatellite markers on 38 chromosome arms. LOH of 38% was observed on 3p using nine markers, 58% on 9p using 15 markers and 38% on 17p using five markers. Fractional allele loss (FAL) has been calculated for each tumour (FAL is the number of chromosome arms showing LOH/number of informative chromosome arms) and a median FAL value of 0.09 was obtained in the 45 NSCLCs studied. The LOH data were examined on the basis of FAL scores: low FAL (LFAL) (0.00-0.04), medium FAL (MFAL) (0.05-0.13) and high FAL (HFAL) (0.14-0.45) based symmetrically around the median FAL value of 0.09. Tumours with HFAL values showed a very clear polarisation of the LOH data on chromosome arms 3p, 9p and 17p, such that 80% showed loss on 3p, 80% on 9p and 73% on 17p. These incidences of LOH were significantly higher than would be expected, since overall genetic instability in these HFAL tumours ranged from 14% to 45% LOH. Nine of the 14 patients in the LFAL group were found to have no LOH on 3p, 9p or 17p, but five of these had LOH at other sites: i.e. LOH on 5p, 5q, 8p, 13q, 16q and 19q. These results indicate that LFAL patients form a new subset of NSCLC tumours with distinct molecular-initating events, and may represent a discrete genetic population
Biomarker Testing for People With Advanced Lung Cancer in England
Introduction: Optimal management of people with advanced NSCLC depends on accurate identification of predictive markers. Yet, real-world data in this setting are limited. We describe the impact, timeliness, and outcomes of molecular testing for patients with advanced NSCLC and good performance status in England. // Methods: In collaboration with Public Health England, patients with stages IIIB to IV NSCLC, with an Eastern Cooperative Oncology Group performance status of 0 to 2, in England, between June 2017 and December 2017, were identified. All English hospitals were invited to record information. // Results: A total of 60 of 142 invited hospitals in England participated in this study and submitted data on 1157 patients. During the study period, 83% of patients with advanced adenocarcinoma underwent molecular testing for three recommended predictive biomarkers (EGFR, ALK, and programmed death-ligand 1). A total of 80% of patients with nonsquamous carcinomas on whom biomarker testing was performed had adequate tissue for analysis on initial sampling. First-line treatment with a tyrosine kinase inhibitor was received by 71% of patients with adenocarcinoma and a sensitizing EGFR mutation and by 59% of those with an ALK translocation. Of patients with no driver mutation and a programmed death-ligand 1 expression of greater than or equal to 50%, 47% received immunotherapy. // Conclusions: We present a comprehensive data set for molecular testing in England. Although molecular testing is well established in England, timeliness and uptake of targeted therapies should be improved
Recommended from our members
Effect of Patient Age on Management Decisions in Breast Cancer: Consensus from a National Consultation
This qualitative study investigated attitudes, perceptions, and practices of breast cancer specialists with reference to the effect of patient age on management decisions in breast cancer, and attempted to identify national consensus on this issue
Lung cancer mortality reduction by LDCT screening: UKLS randomised trial results and international meta-analysis.
Background: The NLST reported a significant 20% reduction in lung cancer mortality with three annual low-dose CT (LDCT) screens and the Dutch-Belgian NELSON trial indicates a similar reduction. We present the results of the UKLS trial. Methods: From October 2011 to February 2013, we randomly allocated 4Ā 055 participants to either a single invitation to screening with LDCT or to no screening (usual care). Eligible participants (aged 50-75) had a risk score (LLPv2) ā„Ā 4.5% of developing lung cancer over five years. Data were collected on lung cancer cases to 31 December 2019 and deaths to 29 February 2020 through linkage to national registries. The primary outcome was mortality due to lung cancer. We included our results in a random-effects meta-analysis to provide a synthesis of the latest randomised trial evidence. Findings: 1Ā 987 participants in the intervention and 1Ā 981 in the usual care arms were followed for a median of 7.3 years (IQR 7.1-7.6), 86 cancers were diagnosed in the LDCT arm and 75 in the control arm. 30 lung cancer deaths were reported in the screening arm, 46 in the control arm, (relative rate 0.65 [95% CI 0.41-1.02]; p=0.062). The meta-analysis indicated a significant reduction in lung cancer mortality with a pooled overall relative rate of 0.84 (95% CI 0.76-0.92) from nine eligible trials. Interpretation: The UKLS trial of single LDCT indicates a reduction of lung cancer death of similar magnitude to the NELSON and NLST trials and was included in a meta-analysis of nine randomised trials which provides unequivocal support for lung cancer screening in identified risk groups. Funding: NIHR Health Technology Assessment programme; NIHR Policy Research programme; Roy Castle Lung Cancer Foundation
Lung cancer mortality reduction by LDCT screening: UKLS randomised trial results and international meta-analysis
Background: The NLST reported a significant 20% reduction in lung cancer mortality with three annual low-dose CT (LDCT) screens and the Dutch-Belgian NELSON trial indicates a similar reduction. We present the results of the UKLS trial. Methods: From October 2011 to February 2013, we randomly allocated 4Ā 055 participants to either a single invitation to screening with LDCT or to no screening (usual care). Eligible participants (aged 50-75) had a risk score (LLPv2) ā„Ā 4.5% of developing lung cancer over five years. Data were collected on lung cancer cases to 31 December 2019 and deaths to 29 February 2020 through linkage to national registries. The primary outcome was mortality due to lung cancer. We included our results in a random-effects meta-analysis to provide a synthesis of the latest randomised trial evidence. Findings: 1Ā 987 participants in the intervention and 1Ā 981 in the usual care arms were followed for a median of 7.3 years (IQR 7.1-7.6), 86 cancers were diagnosed in the LDCT arm and 75 in the control arm. 30 lung cancer deaths were reported in the screening arm, 46 in the control arm, (relative rate 0.65 [95% CI 0.41-1.02]; p=0.062). The meta-analysis indicated a significant reduction in lung cancer mortality with a pooled overall relative rate of 0.84 (95% CI 0.76-0.92) from nine eligible trials. Interpretation: The UKLS trial of single LDCT indicates a reduction of lung cancer death of similar magnitude to the NELSON and NLST trials and was included in a meta-analysis of nine randomised trials which provides unequivocal support for lung cancer screening in identified risk groups. Funding: NIHR Health Technology Assessment programme; NIHR Policy Research programme; Roy Castle Lung Cancer Foundation
- ā¦