1,237 research outputs found

    Survivorship Patterns of Larval Amphibians Exposed to Low Concentrations of Atrazine

    Get PDF
    Amphibians can be exposed to contaminants in nature by many routes, but perhaps the most likely route is agricultural runoff in amphibian breeding sites. This runoff results in high-level pulses of pesticides. For example, atrazine, the most widely used pesticide in the United States, can be present at several parts per million in agricultural runoff. However, pesticide levels are likely to remain in the environment at low levels for longer periods. Nevertheless, most studies designed to examine the impacts of contaminants are limited to short-term (~ 4 days) tests conducted at relatively high concentrations. To investigate longer-term (~ 30 days) exposure of amphibians to low pesticide levels, we exposed tadpoles of four species of frogs—spring peepers (Pseudacris crucifer), American toads (Bufo americanus), green frogs (Rana clamitans), and wood frogs (Rana sylvatica)—at early and late developmental stages to low concentrations of a commercial preparation of atrazine (3, 30, or 100 ppb; the U.S. Environmental Protection Agency drinking water standard is 3 ppb). We found counterintuitive patterns in rate of survivorship. Survival was significantly lower for all animals exposed to 3 ppb compared with either 30 or 100 ppb, except the late stages of B. americanus and R. sylvatica. These survival patterns highlight the importance of investigating the impacts of contaminants with realistic exposures and at various developmental stages. This may be particularly important for compounds that produce greater mortality at lower doses than higher doses, a pattern characteristic of many endocrine disruptors

    Cooccurrence of prey species alters the impact of predators on prey performance through multiple mechanisms

    Get PDF
    When prey are differentially affected by intra and interspecific competition, the cooccurrence of multiple prey species alters the per capita availability of food for a particular prey species which could alter how prey respond to the threat of predation, and hence the overall�effect of predators. We conducted an experiment to examine the extent to which the nonconsumptive and overall effect of predatory water bugs on snail and tadpole traits (performance and morphology) depended on whether tadpoles and snails cooccurred. Tadpoles and snails differed in their relative susceptibility to intraspecific and interspecific competition, and predators affected both prey species via consumptive and nonconsumptive mechanisms. Furthermore, the overall effect of predators often depended on whether another prey species was present. The reasoning for why the overall effect of predators depended on whether prey species cooccurred, however, differed for each of the response variables. Predators affected snail body growth via nonconsumptive mechanisms, but the change in the overall effect of predators on snail body growth was attributable to how snails responded to competition in the absence of predators, rather than a change in how snails responded to the threat of predation. Predators did not affect tadpole body growth via nonconsumptive mechanisms, but the greater vulnerability of competitively superior prey (snails) to predators increased the strength of consumptive mechanisms (and hence the overall effect) through which predators affected tadpole growth. Predators affected tadpole morphology via nonconsumptive mechanisms, but the greater propensity for predators to kill competitively superior prey (snails) enhanced the ability of tadpoles to alter their morphology in response to the threat of predation by creating an environment where tadpoles had a higher per capita supply of food available to invest in the development of morphological defenses. Our work indicates that the mechanisms through which predators affect prey depends on the other members of the community

    Exposure to 4-tert-octylphenol accelerates sexual differentiation and disrupts expression of steroidogenic factor 1 in developing bullfrogs.

    Get PDF
    Sex-specific gonadal steroidogenesis during development is critical to differentiation of the sexually dimorphic phenotype and reproductive function of adult organisms. Environmental contaminants may affect the process of sexual differentiation through disruption of steroid production and/or action. Control of the steroidogenic metabolic pathway is regulated partly by P450 cytochrome hydroxylases, and the expression of many of these enzymes is controlled by the orphan nuclear receptor, steroidogenic factor-1 (SF-1). In mammals, SF-1 expression is critical for development of the reproductive axis and adult reproductive function. In the bullfrog Rana catesbeiana, during sequential stages of development encompassing sexual differentiation, SF-1 protein expression becomes elevated in ovaries of sexually differentiating females, whereas expression in testes decreases. We exposed tadpoles to the industrial pollutant octylphenol (OP) for 24 hr before and during the critical stages of sexual differentiation to determine whether this known endocrine disruptor affects sex differentiation and SF-1 expression. We found that both females and males treated with an environmentally relevant low dose (10(-9)M) of OP underwent early gonadal differentiation. Furthermore, OP exposure disrupted the sexually dimorphic expression of SF-1 that occurs during sexual differentiation. Our results suggest that OP exposure may affect developmental processes that could ultimately influence adult reproductive function and that these disruptive effects may be mediated in partly through disturbances in gene regulation by SF-1

    No personality without experience? A test on Rana dalmatina tadpoles

    Get PDF
    While the number of studies reporting the presence of individual behavioral consistency (animal personality, behavioral syndrome) has boomed in the recent years, there is still much controversy about the proximate and ultimate mechanisms resulting in the phenomenon. For instance, direct environmental effects during ontogeny (phenotypic plasticity) as the proximate mechanism behind the emergence of consistent individual differences in behavior are usually overlooked compared to environmental effects operating across generations (genetic adaptation). Here, we tested the effects of sociality and perceived predation risk during ontogeny on the strength of behavioral consistency in agile frog (Rana dalmatina) tadpoles in a factorial common garden experiment. Tadpoles reared alone and without predatory cues showed zero repeatability within (i.e., lack of personality) and zero correlation between (i.e., lack of syndrome) activity and risk‐taking. On the other hand, cues from predators alone induced both activity and risk‐taking personalities, while cues from predators and conspecifics together resulted in an activity – risk‐taking behavioral syndrome. Our results show that individual experience has an unequivocal role in the emergence of behavioral consistency. In this particular case, the development of behavioral consistency was most likely the result of genotype × environment interactions, or with other words, individual variation in behavioral plasticity

    Influence of density and salinity on larval development of salt-adapted and salt-naïve frog populations

    Get PDF
    Environmental change and habitat fragmentation will affect population densities for many species. For those species that have locally adapted to persist in changed or stressful habitats, it is uncertain how density dependence will affect adaptive responses. Anurans (frogs and toads) are typically freshwater organisms, but some coastal populations of green treefrogs (Hyla cinerea) have adapted to brackish, coastal wetlands. Tadpoles from coastal populations metamorphose sooner and demonstrate faster growth rates than inland populations when reared solitarily. Although saltwater exposure has adaptively reduced the duration of the larval period for coastal populations, increases in densities during larval development typically in-crease time to metamorphosis and reduce rates of growth and survival. We test how combined stressors of density and salinity affect larval development between salt-adapted (“coastal�) and nonsalt-adapted (“inland�) populations by measuring various developmental and metamorphic phenotypes. We found that increased tadpole density strongly affected coastal and inland tadpole populations similarly. In high-density treatments, both coastal and inland populations had reduced growth rates, greater exponential decay of growth, a smaller size at metamorphosis, took longer to reach metamorphosis, and had lower survivorship at metamorphosis. Salinity only exaggerated the effects of density on the time to reach metamorphosis and exponential decay of growth. Location of origin affected length at metamorphosis, with coastal tadpoles metamorphosing slightly longer than inland tadpoles across densities and salinities. These findings confirm that density has a strong and central influence on larval development even across divergent populations and habitat types and may mitigate the expression (and therefore detection) of locally adapted phenotypes

    Synergistic effects of the invasive Chinese tallow (Triadica sebifera) and climate change on aquatic amphibian survival

    Get PDF
    Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms

    Nutrient availability and invasive fish jointly drive community dynamics in an experimental aquatic system

    Full text link
    Species invasions increasingly occur alongside other forms of ecosystem change, highlighting the need to understand how invasion outcomes are influenced by environmental factors. Within freshwaters, two of the most widespread drivers of change are introduced fishes and nutrient loading, yet it remains difficult to predict how interactions between these drivers affect invasion success and consequences for native communities. To test competing theories about interactions between nutrients and invasions, we conducted a 2 × 3 factorial mesocosm experiment, varying western mosquitofish (Gambusia affinis) presence and nutrient availability within aquatic communities. Based on theory, increased nutrients could either (1) facilitate coexistence between predatory mosquitofish and native species by increasing prey availability (the invader attenuation hypothesis) or (2) strengthen predation effects by enhancing fish productivity more than native community members (the invader amplification hypothesis). In outdoor mesocosms designed to mimic observed nutrient conditions and local community structure, mosquitofish directly reduced the abundances of zooplankton and three native amphibian species, leading to indirect increases in phytoplankton, periphyton, and freshwater snail biomass through trophic cascades. Nutrient additions increased native amphibian growth but had especially pronounced effects on the productivity of invasive mosquitofish. The elevated nutrient condition supported ~5 times more juvenile mosquitofish and 30% higher biomass than the low nutrient condition. Increased nutrients levels did not weaken the top‐down effects of mosquitofish on invertebrates or amphibians. Collectively, our results support the invader amplification hypothesis, suggesting that increased nutrient loading may benefit invasive species without attenuating their undesirable effects on native community members.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143635/1/ecs22153_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143635/2/ecs22153.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143635/3/ecs22153-sup-0001-AppendixS1.pd
    corecore