88 research outputs found

    Optical conductivity from local anharmonic phonons

    Full text link
    Recently there has been paid much attention to phenomena caused by local anharmonic vibrations of the guest ions encapsulated in polyhedral cages of materials such as pyrochlore oxides, filled skutterdites and clathrates. We theoretically investigate the optical conductivity solely due to these so-called rattling phonons in a one-dimensional anharmonic potential model. The dipole interaction of the guest ions with electric fields induces excitations expressed as transitions among vibrational states with non-equally spaced energies, resulting in a natural line broadening and a shift of the peak frequency as anharmonic effects. In the case of a single well potential, a softening of the peak frequency and an asymmetric narrowing of the line width with decreasing temperature are understood as a shift of the spectral weight to lower level transitions. On the other hand, the case of a double minima potential leads to a multi-splitting of a spectral peak in the conductivity spectrum with decreasing temperature.Comment: 8 pages, 11 figures, accepted for publication in Phys. Rev.

    Differential responses of normal human coronary artery endothelial cells against multiple cytokines comparatively assessed by gene expression profiles

    Get PDF
    AbstractEndothelial cells play an important role in terms of biological functions by responding to a variety of stimuli in the blood. However, little is known about the molecular mechanism involved in rendering the variety in the cellular response. To investigate the variety of the cellular responses against exogenous stimuli at the gene expression level, we attempted to describe the cellular responses with comprehensive gene expression profiles, dissect them into multiple response patterns, and characterize the response patterns according to the information accumulated so far on the genes included in the patterns. We comparatively analyzed in parallel the gene expression profiles obtained with DNA microarrays from normal human coronary artery endothelial cells (HCAECs) stimulated with multiple cytokines, interleukin-1β, tumor necrosis factor-α, interferon-β, interferon-γ, and oncostatin M, which are profoundly involved in various functional responses of endothelial cells. These analyses revealed that the cellular responses of HCAECs against these cytokines included at least 15 response patterns specific to a single cytokine or common to multiple cytokines. Moreover, we statistically extracted genes contained within the individual response patterns and characterized the response patterns with the genes referring to the previously accumulated findings including the biological process defined by the Gene Ontology Consortium (GO). Out of the 15 response patterns in which at least one gene was successfully extracted through the statistical approach, 11 response patterns were differentially characterized by representing the number of genes contained in individual criteria of the biological process in the GO only. The approach to dissect cellular responses into response patterns and to characterize the pattern at the gene expression level may contribute to the gaining of insight for untangling the diversity of cellular functions

    Comprehensive autoantibody profiling in systemic autoimmunity by a highly-sensitive multiplex protein array

    Get PDF
    Comprehensive autoantibody evaluation is essential for the management of autoimmune disorders. However, conventional methods suffer from poor sensitivity, low throughput, or limited availability. Here, using a proteome-wide human cDNA library, we developed a novel multiplex protein assay (autoantibody array assay; A-Cube) covering 65 antigens of 43 autoantibodies that are associated with systemic sclerosis (SSc) and polymyositis/dermatomyositis (PM/DM). The performance of A-Cube was validated against immunoprecipitation and established enzyme-linked immunosorbent assay. Further, through an evaluation of serum samples from 357 SSc and 172 PM/DM patients, A-Cube meticulously illustrated a diverse autoantibody landscape in these diseases. The wide coverage and high sensitivity of A-Cube also allowed the overlap and correlation analysis between multiple autoantibodies. Lastly, reviewing the cases with distinct autoantibody profiles by A-Cube underscored the importance of thorough autoantibody detection. Together, these data highlighted the utility of A-Cube as well as the clinical relevance of autoantibody profiles in SSc and PM/DM

    An Active C-Terminally Truncated Form of Ca2+/Calmodulin-Dependent Protein Kinase Phosphatase-N (CaMKP-N/PPM1E)

    Get PDF
    Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) and its nuclear homolog CaMKP-N (PPM1E) are Ser/Thr protein phosphatases that belong to the PPM family. CaMKP-N is expressed in the brain and undergoes proteolytic processing to yield a C-terminally truncated form. The physiological significance of this processing, however, is not fully understood. Using a wheat-embryo cell-free protein expression system, we prepared human CaMKP-N (hCaMKP-N(WT)) and the truncated form, hCaMKP-N(1–559), to compare their enzymatic properties using a phosphopeptide substrate. The hCaMKP-N(1–559) exhibited a much higher value than the hCaMKP-N(WT) did, suggesting that the processing may be a regulatory mechanism to generate a more active species. The active form, hCaMKP-N(1–559), showed Mn2+ or Mg2+-dependent phosphatase activity with a strong preference for phospho-Thr residues and was severely inhibited by NaF, but not by okadaic acid, calyculin A, or 1-amino-8-naphthol-2,4-disulfonic acid, a specific inhibitor of CaMKP. It could bind to postsynaptic density and dephosphorylate the autophosphorylated Ca2+/calmodulin-dependent protein kinase II. Furthermore, it was inactivated by H2O2 treatment, and the inactivation was completely reversed by treatment with DTT, implying that this process is reversibly regulated by oxidation/reduction. The truncated CaMKP-N may play an important physiological role in neuronal cells.This work was supported, in part, by Grants-in-Aid for Scientific Research (21590334) from the Ministry of Education, Science, Sports, and Culture of Japan and by a grant from the Japan Foundation for Applied Enzymology

    CAXII Is a Sero-Diagnostic Marker for Lung Cancer

    Get PDF
    To develop sero-diagnostic markers for lung cancer, we generated monoclonal antibodies using pulmonary adenocarcinoma (AD)-derived A549 cells as antigens by employing the random immunization method. Hybridoma supernatants were immunohistochemically screened for antibodies with AMeX-fixed and paraffin-embedded A549 cell preparations. Positive clones were monocloned twice through limiting dilutions. From the obtained monoclonal antibodies, we selected an antibody designated as KU-Lu-5 which showed intense membrane staining of A549 cells. Based on immunoprecipitation and MADLI TOF/TOF-MS analysis, this antibody was recognized as carbonic anhydrase XII (CAXII). To evaluate the utility of this antibody as a sero-diagnostic marker for lung cancer, we performed dot blot analysis with a training set consisting of sera from 70 lung cancer patients and 30 healthy controls. The CAXII expression levels were significantly higher in lung cancer patients than in healthy controls in the training set (P<0.0001), and the area under the curve of ROC was 0.794, with 70.0% specificity and 82.9% sensitivity. In lung cancers, expression levels of CAXII were significantly higher in patients with squamous cell carcinoma (SCC) than with AD (P = 0.035). Furthermore, CAXII was significantly higher in well- and moderately differentiated SCCs than in poorly differentiated ones (P = 0.027). To further confirm the utility of serum CAXII levels as a sero-diagnostic marker, an additional set consisting of sera from 26 lung cancer patients and 30 healthy controls was also investigated by dot blot analysis as a validation study. Serum CAXII levels were also significantly higher in lung cancer patients than in healthy controls in the validation set (P = 0.030). Thus, the serum CAXII levels should be applicable markers discriminating lung cancer patients from healthy controls. To our knowledge, this is the first report providing evidence that CAXII may be a novel sero-diagnostic marker for lung cancer

    Core Transcription Factors Promote Induction of PAX3-Positive Skeletal Muscle Stem Cells

    Get PDF
    The use of adult skeletal muscle stem cells (MuSCs) for cell therapy has been attempted for decades, but still encounters considerable difficulties. MuSCs derived from human induced pluripotent stem cells (hiPSCs) are promising candidates for stem cell therapy to treat Duchenne muscular dystrophy (DMD). Here we report that four transcription factors, HEYL, KLF4, MYOD, and PAX3, selected by comprehensive screening of different MuSC populations, enhance the derivation of PAX3-positive myogenic progenitors from fibroblasts and hiPSCs, using medium that promotes the formation of presomitic mesoderm. These induced PAX3-positive cells contribute efficiently to the repair of DMD-damaged myofibers and also reconstitute the MuSC population. These studies demonstrate how a combination of core transcription factors can fine-tune the derivation of MuSCs capable of contributing to the repair of adult skeletal muscle
    corecore