18 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    An introduction to climate change impacts on water resources and adaptation

    No full text
    In Nagothu, U. S.; Gosain, A. K.; Palanisami, Kuppannan (Eds.). Water and climate change: an integrated approach to address adaptation challenges. New Delhi, India: Macmilla

    Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin

    No full text
    Study region: Ganga River basin. Study focus: The availability of freshwater has been recognized as a global issue, and the reliable evaluation and quantification of it within the basin is necessary to bolster the sustainable management of water. For this purpose a basin-scale SWAT model of the Ganga River basin has been developed. New hydrologic insights for the region: Model validation showed that simulated results were consistent with the observed data in reproducing the seasonal dynamics of surface water and suggest that the model is capable of reproducing the hydrological features of the basin including the snow melt. However, there are large variations in both temporal and spatial distribution of the hydrological components. Statistical methods have been used for detecting trends and critical changes in streamflow. It has been found that although the streamflow from the snow fed areas has increased, the stream flow in the lower reaches and the non-perennial tributaries have declined significantly. This decline can be attributed to both anthropogenic and exogenous changes. The study also establishes that there has been a substantial reduction in overall water resources availability with respect to Virgin. This information sets the yardstick to the restoration of the hydrological and environmental health of the basin and can lead to better management of water resources under scarcity. Keywords: Surface water modeling, SWAT, Ganga River basin, Hydrologic modeling, Trend tes

    Climate change and impacts on water resources: guidelines for adaptation in India. Policy manual, Climawater Project

    No full text

    Water allocation with use of the Building Block Methodology (BBM) in the Godavari Basin, India

    No full text
    Access to sufficient quantities of water of acceptable quality is a basic need for human beings and a pre-requisite to sustain and develop human welfare. In cases of limited availability, the allocation of water between different sectors can result in conflicts of interests. In this study, a modified version of the Building Block Methodology (BBM) was demonstrated for allocation of waters between different sectors. The methodology is a workshop-based tool for assessing water allocation between competing sectors that requires extensive stakeholder involvement. The tool was demonstrated for allocation of water in the Sri Ram Sagar water reservoir in the Godavari Basin, Andhra Pradesh, India. In this multipurpose reservoir, water is used for irrigation, drinking water supply and hydropower production. Possible water allocation regimes were developed under present hydrological conditions (normal and dry years) and under future climate change, characterized by more rain in the rainy season, more frequent droughts in the dry season and accelerated siltation of the reservoir, thus reducing the storage capacity. The feedback from the stakeholders (mainly water managers representing the various sectors) showed that the modified version of the BBM was a practical and useful tool in water allocation, which means that it may be a viable tool for application also elsewhere
    corecore